Sapiens项目运行308关键点模型时的常见问题及解决方案
2025-06-10 03:50:36作者:翟萌耘Ralph
问题背景
在使用Sapiens项目中的Sapiens-0.3B模型提取308个关键点时,用户遇到了两个主要问题:一个是关于torch.load的安全警告,另一个是模型状态字典不匹配的警告。这些问题看似是警告信息,但实际上可能影响模型的正常运行和预测准确性。
问题分析
1. torch.load的安全警告
这个警告信息来自PyTorch框架本身,提示当前使用的torch.load函数默认参数weights_only=False可能存在安全隐患。PyTorch团队计划在未来版本中将此默认值改为True,以提高安全性。这个警告可以暂时忽略,不会影响模型的实际运行。
2. 模型状态字典不匹配问题
更值得关注的是模型状态字典不匹配的警告,提示有多个关键层的权重参数缺失。具体包括:
- head.deconv_layers中的多个权重、偏置、运行均值和方差参数
- head.conv_layers中的多个权重、偏置、运行均值和方差参数
这些缺失可能导致模型性能下降或预测结果不准确。
根本原因
经过深入分析,这些问题的主要原因是用户环境使用了标准的MMLab库,而非Sapiens项目提供的定制版本。具体表现为:
- Python路径中引用了标准MMEngine库而非项目定制版本
- 用户修改了demo_vis.py中的代码以绕过错误,这实际上掩盖了真正的问题
- 环境配置不完整,缺少必要的依赖项
解决方案
完整的环境配置步骤
-
创建干净的conda环境:
conda create -n sapiens python=3.10 -y conda activate sapiens -
安装项目定制依赖: 必须使用项目提供的conda.sh脚本安装定制版本的MMLab库:
bash _install/conda.sh -
验证安装: 检查Python路径是否指向项目本地安装的库,而非系统或conda环境的默认库。
运行模型的正确方式
-
不要修改任何源代码,特别是demo_vis.py中的参数设置
-
设置正确的环境变量:
export SAPIENS_CHECKPOINT_ROOT="path/to/checkpoints" export OUTPUT="path/to/output" export INPUT="path/to/input/data" -
执行脚本:
cd pose/scripts/demo/local/ chmod +x * ./keypoints308.sh
技术细节说明
Sapiens项目对标准MMLab库进行了深度定制,主要修改包括:
- 模型架构调整:为支持308个关键点检测,修改了头部网络结构
- 数据处理流程优化:针对密集关键点检测优化了数据增强和预处理
- 训练策略调整:改进了损失函数和优化器配置
这些修改使得标准MMLab库无法完全兼容Sapiens模型的权重文件,从而导致状态字典不匹配的问题。
验证解决方案的有效性
成功配置后,运行模型时应观察到:
- 不再有状态字典不匹配的警告
- 模型预测结果质量显著提高
- 所有功能无需修改代码即可正常运行
总结
Sapiens项目作为一个高级人体姿态估计框架,对底层库有特殊要求。正确安装项目提供的定制依赖是保证模型正常运行的关键。遇到类似问题时,开发者应首先检查环境配置,确保使用的是项目指定的库版本,而非盲目修改代码或忽略警告信息。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759