Apache SkyWalking BanyanDB Zipkin模块的实体优化方案
2025-05-08 11:12:30作者:齐冠琰
在分布式追踪系统中,实体(entity)的选择直接影响着系统的查询性能和存储效率。Apache SkyWalking项目中的BanyanDB Zipkin模块当前采用spanId作为实体标识,这在生产环境中引发了高基数(high cardinality)问题,进而影响了查询性能。
当前实现的问题分析
在现有实现中,BanyanDB Zipkin模块使用traceId和spanId的组合作为存储ID(StorageID)。这种设计虽然能够唯一标识每个span,但由于spanId的高动态性和不可预测性,会导致以下问题:
- 高基数问题:每个请求都会生成新的spanId,使得实体数量急剧膨胀
- 查询性能下降:大量分散的实体使得索引效率降低
- 存储效率不高:数据分布过于分散,不利于批量操作
优化方案设计
经过社区讨论,确定采用服务名称(service name)作为主要实体标识,同时保留原有的traceId和spanId组合作为唯一标识。这种分层设计既解决了高基数问题,又保持了数据的唯一性。
具体实现要点包括:
- 保持现有ID结构不变:仍然使用
new StorageID().append(TRACE_ID, traceId).append(SPAN_ID, spanId)作为基础ID - 引入分片键(sharding key):通过注解方式标记服务名称,作为数据分片和查询优化的依据
- 双重索引机制:既支持按服务名称的聚合查询,也支持精确的trace/span定位
技术优势
这种优化方案带来了多方面的改进:
- 查询性能提升:基于服务名称的查询可以快速定位相关数据
- 存储效率优化:相同服务的数据可以更好地集中存储
- 系统扩展性增强:为未来可能的业务扩展预留了空间
- 兼容性保证:不影响现有查询接口的使用
实现考量
在实际实现过程中,需要注意以下几点:
- 数据一致性:确保服务名称的提取和标记过程可靠
- 索引平衡:合理配置索引策略,避免过度索引带来的开销
- 查询路由:优化查询路径,根据查询条件自动选择最优访问路径
- 性能监控:增加对实体访问模式的监控,为进一步优化提供依据
这种实体优化方案不仅适用于Zipkin数据格式,对于其他追踪数据格式的处理也有参考价值,体现了Apache SkyWalking在分布式追踪领域的技术积累和实践经验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134