whisper.cpp项目HIPBLAS编译问题分析与解决方案
问题背景
在使用whisper.cpp项目进行AMD GPU加速编译时,开发者遇到了两个主要问题:
- 使用make命令编译时,HIPBLAS选项被忽略,导致最终编译为CPU版本
- 使用cmake编译时,出现
whisper_mel_calc_create_cuda未定义的链接错误
这些问题出现在Pop OS 22.04系统环境下,使用ROCm 6.1.0和AMD RX 7900XT显卡的配置中。
技术分析
HIPBLAS编译机制
whisper.cpp项目支持多种硬件加速后端,包括CUDA和HIPBLAS。HIPBLAS是AMD提供的ROCm平台上的BLAS库实现,用于在AMD GPU上加速线性代数运算。
项目通过条件编译来控制不同后端的启用。在Makefile和CMake配置中,通过WHISPER_HIPBLAS宏来区分不同的编译路径。
问题根源
-
make编译问题:Makefile中条件判断逻辑可能存在问题,导致HIPBLAS选项未被正确识别和处理。
-
cmake链接错误:这是由于PR #2206引入的CUDA mel计算功能与HIPBLAS编译产生了冲突。在HIPBLAS模式下,不应该包含CUDA特定的mel计算实现,但条件编译宏没有正确排除这部分代码。
解决方案
make编译修复
修改Makefile中whisper-mel-cuda.o的位置,将其移动到CUDA条件判断块内:
ifdef WHISPER_CUDA
...
whisper-mel-cuda.o: whisper.cpp whisper.h
$(NVCC) $(NVCCFLAGS) -c $< -o $@
endif
代码条件编译修复
在whisper.cpp中,修改mel计算相关的条件编译宏:
#if GGML_USE_CUDA && !defined(GGML_USE_HIPBLAS)
这样确保在HIPBLAS模式下不会编译CUDA特定的mel计算实现。
验证方法
修复后,可以使用以下命令验证编译是否成功:
make clean
WHISPER_HIPBLAS=1 make -j8
或者使用cmake方式:
CXX=hipcc CC=hipcc cmake -B build -DWHISPER_HIPBLAS=ON -DAMDGPU_TARGETS="gfx1100" -DBUILD_SHARED_LIBS=ON
cmake --build build -j --config Release
技术建议
-
对于AMD GPU用户,建议优先使用ROCm 6.1或更高版本,以获得最佳的HIPBLAS支持。
-
在编译前,确保系统已正确安装ROCm工具链和HIPBLAS库。
-
如果遇到类似问题,可以回退到已知能正常工作的提交(如af5833e),作为临时解决方案。
-
对于开发者,建议在添加新的硬件加速功能时,考虑所有支持的后端兼容性,并添加相应的条件编译保护。
通过以上修改,开发者可以成功在AMD GPU平台上编译并使用whisper.cpp的HIPBLAS加速功能,显著提升语音处理性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00