whisper.cpp项目HIPBLAS编译问题分析与解决方案
问题背景
在使用whisper.cpp项目进行AMD GPU加速编译时,开发者遇到了两个主要问题:
- 使用make命令编译时,HIPBLAS选项被忽略,导致最终编译为CPU版本
- 使用cmake编译时,出现
whisper_mel_calc_create_cuda未定义的链接错误
这些问题出现在Pop OS 22.04系统环境下,使用ROCm 6.1.0和AMD RX 7900XT显卡的配置中。
技术分析
HIPBLAS编译机制
whisper.cpp项目支持多种硬件加速后端,包括CUDA和HIPBLAS。HIPBLAS是AMD提供的ROCm平台上的BLAS库实现,用于在AMD GPU上加速线性代数运算。
项目通过条件编译来控制不同后端的启用。在Makefile和CMake配置中,通过WHISPER_HIPBLAS宏来区分不同的编译路径。
问题根源
-
make编译问题:Makefile中条件判断逻辑可能存在问题,导致HIPBLAS选项未被正确识别和处理。
-
cmake链接错误:这是由于PR #2206引入的CUDA mel计算功能与HIPBLAS编译产生了冲突。在HIPBLAS模式下,不应该包含CUDA特定的mel计算实现,但条件编译宏没有正确排除这部分代码。
解决方案
make编译修复
修改Makefile中whisper-mel-cuda.o的位置,将其移动到CUDA条件判断块内:
ifdef WHISPER_CUDA
...
whisper-mel-cuda.o: whisper.cpp whisper.h
$(NVCC) $(NVCCFLAGS) -c $< -o $@
endif
代码条件编译修复
在whisper.cpp中,修改mel计算相关的条件编译宏:
#if GGML_USE_CUDA && !defined(GGML_USE_HIPBLAS)
这样确保在HIPBLAS模式下不会编译CUDA特定的mel计算实现。
验证方法
修复后,可以使用以下命令验证编译是否成功:
make clean
WHISPER_HIPBLAS=1 make -j8
或者使用cmake方式:
CXX=hipcc CC=hipcc cmake -B build -DWHISPER_HIPBLAS=ON -DAMDGPU_TARGETS="gfx1100" -DBUILD_SHARED_LIBS=ON
cmake --build build -j --config Release
技术建议
-
对于AMD GPU用户,建议优先使用ROCm 6.1或更高版本,以获得最佳的HIPBLAS支持。
-
在编译前,确保系统已正确安装ROCm工具链和HIPBLAS库。
-
如果遇到类似问题,可以回退到已知能正常工作的提交(如af5833e),作为临时解决方案。
-
对于开发者,建议在添加新的硬件加速功能时,考虑所有支持的后端兼容性,并添加相应的条件编译保护。
通过以上修改,开发者可以成功在AMD GPU平台上编译并使用whisper.cpp的HIPBLAS加速功能,显著提升语音处理性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00