开源项目 dl4mt-c2c 使用教程
2024-09-09 08:45:06作者:管翌锬
1. 项目介绍
dl4mt-c2c 是一个基于深度学习的机器翻译项目,由纽约大学深度学习实验室开发。该项目主要用于训练和评估基于字符级别的机器翻译模型。它使用了 Subword-NMT 和 dl4mt-cdec 的代码作为基础,并提供了预处理的数据集和预训练的模型。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.x
- Theano
- CUDA (如果使用 GPU 进行训练)
2.2 下载项目
git clone https://github.com/nyu-dl/dl4mt-c2c.git
cd dl4mt-c2c
2.3 配置环境变量
如果使用 GPU 进行训练,请设置以下环境变量:
export THEANO_FLAGS=device=gpu,floatX=float32
如果您的 GPU 内存较大,可以进一步优化:
export THEANO_FLAGS=device=gpu,floatX=float32,lib.cnmem=0.95,allow_gc=False
2.4 下载数据集
下载 WMT'15 数据集:
# 下载标准版本数据集
wget https://path/to/standard/version/dataset.tar.gz
tar -xzvf dataset.tar.gz
# 下载转换为拉丁字母的版本
wget https://path/to/latin/version/dataset.tar.gz
tar -xzvf dataset.tar.gz
2.5 训练模型
2.5.1 双语 bpe2char 模型
python bpe2char/train_bi_bpe2char.py -translate <LANGUAGE_PAIR>
2.5.2 双语 char2char 模型
python char2char/train_bi_char2char.py -translate <LANGUAGE_PAIR>
2.5.3 多语种 bpe2char 模型
python bpe2char/train_multi_bpe2char.py
2.5.4 多语种 char2char 模型
python char2char/train_multi_char2char.py
2.6 从检查点恢复训练
如果需要从检查点恢复训练,可以使用以下命令:
python <train_script>.py -re_load
3. 应用案例和最佳实践
3.1 应用案例
dl4mt-c2c 项目可以应用于多种语言对的机器翻译任务,特别是在处理低资源语言时表现出色。例如,它可以用于将俄语翻译为英语,或者将中文翻译为英语。
3.2 最佳实践
- 数据预处理:在训练模型之前,确保数据集已经过适当的预处理,包括分词、去除噪声等。
- 超参数调优:根据不同的语言对和数据集,调整模型的超参数以获得最佳性能。
- 使用 GPU:如果条件允许,尽量使用 GPU 进行训练,以加快训练速度。
4. 典型生态项目
- Subword-NMT:用于子词级别的分词,是
dl4mt-c2c的基础之一。 - dl4mt-cdec:另一个基于深度学习的机器翻译项目,与
dl4mt-c2c有相似的应用场景。 - MOSES:经典的统计机器翻译工具,
dl4mt-c2c在评估时使用了 MOSES 的脚本。
通过以上步骤,您可以快速上手并使用 dl4mt-c2c 项目进行机器翻译模型的训练和评估。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882