Snort3在Ubuntu 24.04中使用Hyperscan引擎的兼容性问题分析
问题背景
在Ubuntu 24.04系统上部署Snort3入侵检测系统时,当配置文件中启用hyperscan_literals = true选项时,系统会报告大量内容匹配规则编译失败的错误。这些错误主要涉及十六进制格式的内容匹配规则,如|00 00 00 82 |等格式的规则内容无法被正确编译。
问题表现
具体表现为当运行Snort3测试命令时,系统会输出大量类似以下的错误信息:
ERROR: /usr/local/etc/rules/snort.rules:23114 can't compile content '|00 00 00 82 |'
ERROR: /usr/local/etc/rules/snort.rules:23115 can't compile content '|00 00 00 82 |'
根本原因分析
经过深入调查,发现此问题与Hyperscan库的版本兼容性有关。Ubuntu 24.04系统默认提供的Hyperscan 5.4.2版本存在对十六进制内容匹配规则的编译问题。这个问题自Hyperscan 5.4.1版本开始出现,是Hyperscan库本身的一个缺陷。
解决方案
临时解决方案
-
禁用Hyperscan字面量匹配
在Snort3配置文件中注释掉hyperscan_literals = true这一行,可以暂时规避此问题。但这样会失去Hyperscan引擎带来的性能优势。 -
使用替代搜索引擎
Snort3提供了多种搜索引擎作为Hyperscan的替代方案:- ac_bnfa:基于Aho-Corasick算法的非确定性有限自动机实现
- ac_full:完整的Aho-Corasick算法实现 这些替代方案虽然性能可能略低于Hyperscan,但功能完整且稳定。
长期解决方案
使用Vectorscan替代Hyperscan
Vectorscan是Hyperscan的一个开源分支版本,解决了原版Hyperscan的这个问题。安装步骤如下:
- 安装依赖项:
apt-get update && apt-get -y install build-essential cmake ragel pkg-config libsqlite3-dev libpcap-dev libboost-all-dev
- 编译安装Vectorscan:
cd vectorscan
mkdir build
cd build
cmake -DUSE_CPU_NATIVE=on -DFAT_RUNTIME=off -DBUILD_AVX2=ON ../
make -j$(nproc)
make install
- 重新编译安装Snort3,此时它会自动链接到新安装的Vectorscan库。
技术细节
Hyperscan是Intel开发的高性能正则表达式匹配库,广泛应用于网络安全领域。Snort3通过集成Hyperscan来提升规则匹配效率,特别是在处理大量复杂规则时。然而,Hyperscan 5.4.x版本对十六进制格式的内容匹配规则处理存在缺陷,导致这些规则无法被正确编译。
Vectorscan作为Hyperscan的开源分支,不仅解决了这个问题,还保持了与原版Hyperscan的API兼容性,使得Snort3可以无缝切换使用。
最佳实践建议
- 在Ubuntu 24.04上部署Snort3时,建议优先考虑使用Vectorscan替代系统自带的Hyperscan。
- 如果必须使用系统自带的Hyperscan,可以暂时禁用hyperscan_literals选项,并考虑使用ac_bnfa或ac_full等替代搜索引擎。
- 定期检查Hyperscan/Vectorscan的更新,关注相关问题的修复进展。
总结
Ubuntu 24.04系统中Hyperscan库的兼容性问题影响了Snort3的正常运行,特别是涉及十六进制内容匹配规则的处理。通过使用Vectorscan替代方案或调整Snort3的搜索引擎配置,可以有效解决这一问题。网络安全系统的部署需要特别注意底层依赖库的版本兼容性,定期更新和维护是保证系统稳定运行的关键。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00