Optax项目中的Triplet Marginal Loss实现解析
2025-07-07 01:09:03作者:裘旻烁
概述
在深度学习领域,损失函数是模型训练的核心组件之一。Optax作为Google DeepMind开发的优化库,近期在其自监督学习模块中新增了Triplet Marginal Loss(三元组边际损失)的实现。这种损失函数特别适用于度量学习和特征嵌入任务,能够有效地学习样本间的相似性关系。
Triplet Marginal Loss原理
Triplet Marginal Loss是一种基于三元组(anchor, positive, negative)的对比损失函数。其核心思想是通过比较锚点样本与正样本(同类样本)和负样本(不同类样本)之间的距离,使同类样本在嵌入空间中更接近,不同类样本更远离。
数学表达式为:
L = max(d(a,p) - d(a,n) + margin, 0)
其中:
d(a,p)表示锚点与正样本的距离d(a,n)表示锚点与负样本的距离margin是一个超参数,控制正负样本对之间的最小距离差
Optax实现特点
Optax的实现位于自监督学习损失模块中,与PyTorch的实现保持兼容但针对JAX生态进行了优化。主要特点包括:
- 距离度量灵活性:支持L2距离(欧氏距离)和L1距离(曼哈顿距离)等多种距离度量方式
- 批处理优化:充分利用JAX的向量化特性,高效处理批量数据
- 数值稳定性:加入了适当的数值稳定处理,防止梯度爆炸或消失
应用场景
Triplet Marginal Loss特别适用于以下场景:
- 人脸识别系统
- 图像检索任务
- 推荐系统中的用户/物品嵌入学习
- 任何需要学习有判别性特征表示的任务
实现考量
在实现过程中,开发者需要注意:
- 三元组采样策略:合理选择三元组对模型性能至关重要
- margin参数选择:需要根据具体任务调整
- 梯度计算:确保损失函数的梯度计算正确,以支持反向传播
总结
Optax中加入Triplet Marginal Loss丰富了其自监督学习工具集,为度量学习任务提供了更多选择。这一实现不仅保持了与主流深度学习框架的兼容性,还充分利用了JAX的高效计算特性,是特征学习任务中的有力工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355