OpenCompass中使用NumWorkerPartitioner时的结果汇总问题解析
在OpenCompass项目中进行大规模模型评估时,NumWorkerPartitioner是一个常用的任务分割工具。它能够将评估任务均匀分配到多个工作节点上并行执行,显著提高评估效率。然而,在实际使用过程中,开发者可能会遇到一个典型问题:当使用NumWorkerPartitioner切分推理层和验证层任务后,最终的结果指标无法正确汇总。
问题现象
当配置文件中使用如下设置时:
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(
type=LocalRunner,
task=dict(type=OpenICLInferTask),
max_num_workers=8
)
)
eval = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(
type=LocalRunner,
task=dict(type=OpenICLEvalTask),
max_num_workers=100
)
)
执行评估后,工作目录中会为每个测试集生成多个分片结果文件(如AGIEval_0.json到AGIEval_7.json),但在最终的结果汇总(summarize)阶段,这些分片结果无法自动合并,导致最终指标显示为"-"。
问题根源
这个问题源于OpenCompass的默认结果汇总机制与NumWorkerPartitioner的工作方式不兼容。NumWorkerPartitioner会将单个数据集评估任务拆分为多个子任务并行执行,每个子任务生成独立的结果文件。而默认的结果汇总器(Summarizer)设计时可能没有考虑到这种分片结果的情况,导致无法自动识别和合并这些分片结果。
解决方案
针对这个问题,开发者可以采取以下解决方案:
-
自定义NumWorkerSummarizer: 实现一个专门处理NumWorkerPartitioner分片结果的汇总器。这个汇总器需要:
- 识别同一数据集的分片结果文件(通过文件名模式匹配)
- 合并各分片的评估指标
- 计算整体数据集的结果
-
结果后处理脚本: 编写一个后处理脚本,在所有评估任务完成后:
- 扫描结果目录,收集所有分片结果
- 合并统计指标
- 生成最终汇总报告
-
调整评估策略: 如果数据集规模允许,可以:
- 减少num_worker数量
- 使用其他分区策略(如SizePartitioner)
- 避免将单个数据集拆分成过多分片
最佳实践建议
-
对于超大规模评估任务,推荐使用自定义的NumWorkerSummarizer方案,这能保持并行评估的高效性同时确保结果正确汇总。
-
实现自定义汇总器时,需要注意:
- 结果文件的命名规范
- 指标合并的逻辑(特别是对于accuracy等需要加权平均的指标)
- 错误处理和部分结果缺失的情况
-
在评估配置中明确记录使用的分区策略和对应的汇总器,便于后续结果复现和问题排查。
通过合理设计结果汇总机制,开发者可以充分发挥OpenCompass的并行评估能力,同时确保最终评估结果的准确性和完整性。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0106Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









