Dagu项目中大规模DAG处理性能优化实践
2025-07-06 01:28:23作者:谭伦延
背景介绍
在数据处理领域,DAG(有向无环图)是一种常用的任务编排方式。Dagu作为一个轻量级的DAG执行引擎,在处理大规模数据时可能会遇到性能瓶颈。本文将以一个实际案例为基础,探讨如何优化Dagu在处理数百个DAG时的性能问题。
问题现象
在实际生产环境中,当系统每天处理数百个DAG时,Web界面会出现明显的响应延迟。具体表现为:
- 页面加载时间显著增加
- 用户界面出现卡顿甚至无响应
- 随着DAG数量的累积,问题愈发严重
问题分析
经过深入分析,我们发现性能瓶颈主要来自以下几个方面:
- API轮询机制:前端频繁请求后端获取DAG状态,当DAG数量庞大时,每次请求都需要处理大量数据
- 数据序列化开销:后端需要将大量DAG状态信息序列化为JSON格式返回给前端
- 网络传输延迟:大量DAG状态数据在网络上传输需要较长时间
解决方案
针对上述问题,我们提出了多层次的优化方案:
1. 服务端缓存机制
我们在服务端实现了DAG状态的缓存系统,核心设计包括:
- 使用内存缓存存储最新的DAG状态
- 当DAG执行完成时,通过API触发缓存更新
- 缓存采用LRU(最近最少使用)策略,自动淘汰旧数据
这种设计避免了每次请求都从磁盘读取和解析大量DAG状态文件的开销。
2. 增量数据获取
前端不再请求完整的DAG列表,而是:
- 默认只获取最近5天内的DAG状态
- 提供筛选功能让用户按需查询历史数据
- 实现分页加载机制,避免一次性传输过多数据
3. 实时更新机制
为了进一步提升用户体验,我们计划在未来版本中:
- 引入WebSocket实现实时状态更新
- 当DAG状态发生变化时,服务端主动推送更新到前端
- 减少不必要的轮询请求
实现细节
在Dagu v1.13.0版本中,我们首先实现了服务端缓存机制。具体实现要点包括:
- 缓存数据结构:使用并发安全的数据结构存储DAG状态
- 缓存失效策略:当DAG执行完成时自动更新缓存
- 缓存预热:服务启动时自动加载常用DAG的状态
- 内存管理:设置合理的缓存大小限制,防止内存溢出
效果评估
优化后的系统表现出显著的性能提升:
- 页面加载时间减少80%以上
- 服务端CPU使用率下降明显
- 内存占用更加稳定
- 用户体验得到大幅改善
最佳实践
基于这次优化经验,我们总结出以下最佳实践:
- 合理设置缓存周期:根据业务需求设置合适的缓存过期时间
- 监控缓存命中率:定期检查缓存效果,及时调整策略
- 渐进式加载:对于大数据集,始终采用分页或懒加载策略
- 实时性权衡:根据业务对实时性的要求,选择合适的更新机制
未来展望
我们将继续优化Dagu的性能和可扩展性,计划中的改进包括:
- 更智能的缓存策略
- 完整的WebSocket支持
- 分布式缓存支持
- 更细粒度的状态更新机制
通过这些优化,Dagu将能够更好地支持大规模数据处理场景,为用户提供更流畅的使用体验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
852
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
240
283

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
614
74

React Native鸿蒙化仓库
C++
175
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.07 K