TensorRTX项目中YOLOv5推理结果与PyTorch不一致问题解析
2025-05-30 23:45:30作者:廉皓灿Ida
问题背景
在TensorRTX项目中使用YOLOv5模型进行目标检测时,开发者发现通过TensorRT引擎推理得到的边界框中心坐标与PyTorch推理结果存在差异,而宽度和高度则基本一致。这一问题影响了模型评估的准确性,特别是在需要精确比较两种实现方式性能的场景下。
差异原因分析
经过深入分析,发现这种差异主要来源于两种实现方式在图像预处理阶段采用了不同的缩放策略:
-
TensorRTX实现:使用了等比缩放策略
float scale = std::min(dst_height / (float)src_height, dst_width / (float)src_width); -
PyTorch实现:采用了保持纵横比的缩放策略
shape0.append(s) # image shape g = max(size) / max(s) # gain
这两种不同的预处理方式导致了模型输入的特征分布存在细微差别,进而影响了最终检测结果的坐标值。
解决方案
为了确保TensorRTX推理结果与PyTorch保持一致,需要对检测结果的坐标进行后处理转换。关键点在于理解并实现正确的坐标映射关系:
-
坐标转换原理:
- 首先计算输入图像与模型输入尺寸的比例关系
- 根据不同的缩放情况(宽度受限或高度受限)采用不同的补偿策略
- 将模型输出的归一化坐标映射回原始图像空间
-
实现代码: 以下C++函数实现了从模型输出坐标到原始图像坐标的转换:
std::tuple<float, float, float, float> get_rect_values(cv::Mat& img, float bbox[4]) { float l, r, t, b; float r_w = kInputW / (img.cols * 1.0); float r_h = kInputH / (img.rows * 1.0); if (r_h > r_w) { // 宽度受限情况 l = bbox[0] - bbox[2] / 2.f; r = bbox[0] + bbox[2] / 2.f; t = bbox[1] - bbox[3] / 2.f - (kInputH - r_w * img.rows) / 2; b = bbox[1] + bbox[3] / 2.f - (kInputH - r_w * img.rows) / 2; l = l / r_w; r = r / r_w; t = t / r_w; b = b / r_w; } else { // 高度受限情况 l = bbox[0] - bbox[2] / 2.f - (kInputW - r_h * img.cols) / 2; r = bbox[0] + bbox[2] / 2.f - (kInputW - r_h * img.cols) / 2; t = bbox[1] - bbox[3] / 2.f; b = bbox[1] + bbox[3] / 2.f; l = l / r_h; r = r / r_h; t = t / r_h; b = b / r_h; } return std::make_tuple(l, t, r - l, b - t); }
技术要点
-
比例计算:
r_w和r_h分别表示宽度和高度方向上的缩放比例- 通过比较这两个比例可以确定图像是宽度受限还是高度受限
-
补偿策略:
- 对于受限的维度,需要补偿因保持纵横比而添加的padding
- 补偿值计算为
(kInputH - r_w * img.rows) / 2或(kInputW - r_h * img.cols) / 2
-
坐标映射:
- 将模型输出的归一化坐标减去补偿值
- 然后除以相应的缩放比例,映射回原始图像空间
实际应用
在实际评估模型性能时,开发者可以:
- 使用上述函数转换TensorRT推理结果
- 将转换后的坐标与PyTorch推理结果进行比较
- 确保两种实现方式在相同的评估标准下进行对比
这种方法不仅解决了坐标不一致的问题,也为后续的模型优化和部署提供了可靠的技术基础。
总结
TensorRTX项目中YOLOv5推理结果与PyTorch的差异主要源于预处理策略的不同。通过实现正确的坐标后处理转换,可以确保两种实现方式的评估结果具有可比性。这一解决方案不仅适用于当前的评估需求,也为后续的模型部署和优化提供了重要的技术参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92