TensorRTX项目中YOLOv5推理结果与PyTorch不一致问题解析
2025-05-30 18:03:40作者:廉皓灿Ida
问题背景
在TensorRTX项目中使用YOLOv5模型进行目标检测时,开发者发现通过TensorRT引擎推理得到的边界框中心坐标与PyTorch推理结果存在差异,而宽度和高度则基本一致。这一问题影响了模型评估的准确性,特别是在需要精确比较两种实现方式性能的场景下。
差异原因分析
经过深入分析,发现这种差异主要来源于两种实现方式在图像预处理阶段采用了不同的缩放策略:
-
TensorRTX实现:使用了等比缩放策略
float scale = std::min(dst_height / (float)src_height, dst_width / (float)src_width); -
PyTorch实现:采用了保持纵横比的缩放策略
shape0.append(s) # image shape g = max(size) / max(s) # gain
这两种不同的预处理方式导致了模型输入的特征分布存在细微差别,进而影响了最终检测结果的坐标值。
解决方案
为了确保TensorRTX推理结果与PyTorch保持一致,需要对检测结果的坐标进行后处理转换。关键点在于理解并实现正确的坐标映射关系:
-
坐标转换原理:
- 首先计算输入图像与模型输入尺寸的比例关系
- 根据不同的缩放情况(宽度受限或高度受限)采用不同的补偿策略
- 将模型输出的归一化坐标映射回原始图像空间
-
实现代码: 以下C++函数实现了从模型输出坐标到原始图像坐标的转换:
std::tuple<float, float, float, float> get_rect_values(cv::Mat& img, float bbox[4]) { float l, r, t, b; float r_w = kInputW / (img.cols * 1.0); float r_h = kInputH / (img.rows * 1.0); if (r_h > r_w) { // 宽度受限情况 l = bbox[0] - bbox[2] / 2.f; r = bbox[0] + bbox[2] / 2.f; t = bbox[1] - bbox[3] / 2.f - (kInputH - r_w * img.rows) / 2; b = bbox[1] + bbox[3] / 2.f - (kInputH - r_w * img.rows) / 2; l = l / r_w; r = r / r_w; t = t / r_w; b = b / r_w; } else { // 高度受限情况 l = bbox[0] - bbox[2] / 2.f - (kInputW - r_h * img.cols) / 2; r = bbox[0] + bbox[2] / 2.f - (kInputW - r_h * img.cols) / 2; t = bbox[1] - bbox[3] / 2.f; b = bbox[1] + bbox[3] / 2.f; l = l / r_h; r = r / r_h; t = t / r_h; b = b / r_h; } return std::make_tuple(l, t, r - l, b - t); }
技术要点
-
比例计算:
r_w和r_h分别表示宽度和高度方向上的缩放比例- 通过比较这两个比例可以确定图像是宽度受限还是高度受限
-
补偿策略:
- 对于受限的维度,需要补偿因保持纵横比而添加的padding
- 补偿值计算为
(kInputH - r_w * img.rows) / 2或(kInputW - r_h * img.cols) / 2
-
坐标映射:
- 将模型输出的归一化坐标减去补偿值
- 然后除以相应的缩放比例,映射回原始图像空间
实际应用
在实际评估模型性能时,开发者可以:
- 使用上述函数转换TensorRT推理结果
- 将转换后的坐标与PyTorch推理结果进行比较
- 确保两种实现方式在相同的评估标准下进行对比
这种方法不仅解决了坐标不一致的问题,也为后续的模型优化和部署提供了可靠的技术基础。
总结
TensorRTX项目中YOLOv5推理结果与PyTorch的差异主要源于预处理策略的不同。通过实现正确的坐标后处理转换,可以确保两种实现方式的评估结果具有可比性。这一解决方案不仅适用于当前的评估需求,也为后续的模型部署和优化提供了重要的技术参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19