XTuner项目中使用Slurm进行单机多卡微调的技术实践
2025-06-13 02:08:20作者:蔡丛锟
问题背景
在XTuner项目中进行大语言模型微调时,研究人员经常面临显存不足的问题。特别是在使用Llama-2-7B这类大模型进行全参数微调时,即使配备了多块高显存GPU(如4块A100 80G),也可能出现只有一块GPU工作而其他GPU闲置的情况,最终导致显存溢出(OOM)错误。
技术分析
原始配置的问题
原始Slurm提交命令存在几个关键问题:
--ntasks-per-node=1
参数限制了每个节点只运行一个任务- 没有正确配置
--ntasks
参数,导致无法充分利用多GPU资源 - 线程配置(
OMP_NUM_THREADS=8
)可能影响性能但非主要问题
正确的Slurm配置方案
经过实践验证,正确的Slurm命令应包含以下关键参数:
--gres=gpu:4
:申请4块GPU资源--ntasks=4
:总共运行4个任务--ntasks-per-node=4
:每个节点运行4个任务--cpus-per-task=16
:每个任务分配16个CPU核心
完整命令示例:
srun -p MoE --job-name=xx --quotatype=auto --gres=gpu:4 --ntasks=4 --ntasks-per-node=4 --cpus-per-task=16 --kill-on-bad-exit=1 xtuner train ./llama2_7b_full.py --launcher slurm --deepspeed deepspeed_zero3
配置验证
执行命令后,需要检查日志中显示的GPU数量是否正确。在XTuner的启动日志中,会明确显示检测到的GPU数量,确保与申请的GPU数量一致。这是验证多卡配置是否生效的重要指标。
技术原理
Slurm资源管理
Slurm通过精确的资源分配参数来控制计算资源的使用:
--ntasks
指定总任务数,对应模型并行中的进程数--gres=gpu:N
指定GPU数量,必须与任务数匹配--cpus-per-task
影响数据加载和预处理效率
XTuner的多卡支持
XTuner内部通过以下机制支持多卡训练:
- 自动检测可用的GPU设备
- 与Slurm调度系统集成,正确分配计算资源
- 支持DeepSpeed等分布式训练框架
最佳实践建议
- 资源匹配原则:确保
--ntasks
与--gres=gpu:N
中的N值一致 - 性能调优:根据GPU型号调整
--cpus-per-task
,通常A100建议16-32个CPU核心 - 内存管理:结合
max_length
和batch_size
参数优化显存使用 - 监控机制:训练初期观察GPU利用率,确保所有GPU都参与计算
总结
在XTuner项目中使用Slurm进行多卡微调时,正确的资源配置是成功的关键。通过合理设置Slurm参数,可以充分发挥多GPU的计算能力,有效解决大模型训练中的显存问题。本文提供的配置方案已在Llama-2-7B全参数微调场景中得到验证,可作为类似任务的参考配置。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
268
308

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3