XTuner项目中使用Slurm进行单机多卡微调的技术实践
2025-06-13 21:06:22作者:蔡丛锟
问题背景
在XTuner项目中进行大语言模型微调时,研究人员经常面临显存不足的问题。特别是在使用Llama-2-7B这类大模型进行全参数微调时,即使配备了多块高显存GPU(如4块A100 80G),也可能出现只有一块GPU工作而其他GPU闲置的情况,最终导致显存溢出(OOM)错误。
技术分析
原始配置的问题
原始Slurm提交命令存在几个关键问题:
--ntasks-per-node=1参数限制了每个节点只运行一个任务- 没有正确配置
--ntasks参数,导致无法充分利用多GPU资源 - 线程配置(
OMP_NUM_THREADS=8)可能影响性能但非主要问题
正确的Slurm配置方案
经过实践验证,正确的Slurm命令应包含以下关键参数:
--gres=gpu:4:申请4块GPU资源--ntasks=4:总共运行4个任务--ntasks-per-node=4:每个节点运行4个任务--cpus-per-task=16:每个任务分配16个CPU核心
完整命令示例:
srun -p MoE --job-name=xx --quotatype=auto --gres=gpu:4 --ntasks=4 --ntasks-per-node=4 --cpus-per-task=16 --kill-on-bad-exit=1 xtuner train ./llama2_7b_full.py --launcher slurm --deepspeed deepspeed_zero3
配置验证
执行命令后,需要检查日志中显示的GPU数量是否正确。在XTuner的启动日志中,会明确显示检测到的GPU数量,确保与申请的GPU数量一致。这是验证多卡配置是否生效的重要指标。
技术原理
Slurm资源管理
Slurm通过精确的资源分配参数来控制计算资源的使用:
--ntasks指定总任务数,对应模型并行中的进程数--gres=gpu:N指定GPU数量,必须与任务数匹配--cpus-per-task影响数据加载和预处理效率
XTuner的多卡支持
XTuner内部通过以下机制支持多卡训练:
- 自动检测可用的GPU设备
- 与Slurm调度系统集成,正确分配计算资源
- 支持DeepSpeed等分布式训练框架
最佳实践建议
- 资源匹配原则:确保
--ntasks与--gres=gpu:N中的N值一致 - 性能调优:根据GPU型号调整
--cpus-per-task,通常A100建议16-32个CPU核心 - 内存管理:结合
max_length和batch_size参数优化显存使用 - 监控机制:训练初期观察GPU利用率,确保所有GPU都参与计算
总结
在XTuner项目中使用Slurm进行多卡微调时,正确的资源配置是成功的关键。通过合理设置Slurm参数,可以充分发挥多GPU的计算能力,有效解决大模型训练中的显存问题。本文提供的配置方案已在Llama-2-7B全参数微调场景中得到验证,可作为类似任务的参考配置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111