Basic Pitch 项目使用教程
1. 项目介绍
Basic Pitch 是一个由 Spotify 的 Audio Intelligence Lab 开发的 Python 库,用于自动音乐转录(Automatic Music Transcription, AMT)。它使用轻量级神经网络,能够将音频文件转换为 MIDI 文件,并支持音高弯曲检测。Basic Pitch 具有高效、易用、多音高支持、跨乐器泛化能力强等特点,适用于各种乐器和音乐风格的转录。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 Basic Pitch:
pip install basic-pitch
2.2 使用示例
安装完成后,你可以使用 Basic Pitch 的命令行工具来转录音频文件。以下是一个简单的示例:
basic-pitch /output/directory/path /input/audio/path
其中,/output/directory/path 是输出 MIDI 文件的目录,/input/audio/path 是输入音频文件的路径。
2.3 程序化使用
你也可以在 Python 代码中直接使用 Basic Pitch 进行转录:
from basic_pitch.inference import predict
model_output, midi_data, note_events = predict('/input/audio/path')
3. 应用案例和最佳实践
3.1 音乐创作
Basic Pitch 可以帮助音乐创作者快速将音频素材转换为 MIDI 文件,从而在数字音频工作站(DAW)中进行进一步编辑和创作。
3.2 音乐教育
在音乐教育领域,Basic Pitch 可以用于分析学生的演奏,生成 MIDI 文件以便进行详细的音高和节奏分析。
3.3 音乐分析
研究人员可以使用 Basic Pitch 来分析不同音乐作品的音高结构,从而进行音乐理论和风格分析。
4. 典型生态项目
4.1 librosa
Basic Pitch 依赖于 librosa 库进行音频处理。librosa 是一个用于音乐和音频分析的 Python 库,提供了丰富的音频处理功能。
4.2 TensorFlow
Basic Pitch 使用 TensorFlow 作为其默认的模型运行时。TensorFlow 是一个开源的机器学习框架,广泛应用于各种深度学习任务。
4.3 CoreML 和 ONNX
除了 TensorFlow,Basic Pitch 还支持 CoreML 和 ONNX 模型格式,以便在不同的硬件平台上进行优化和加速。
通过以上步骤,你可以快速上手并使用 Basic Pitch 进行音频到 MIDI 的转录。希望这个教程对你有所帮助!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00