Liger-Kernel v0.5.9版本发布:新增XPU支持与GLM-4/Qwen3模型适配
2025-06-11 17:21:32作者:农烁颖Land
Liger-Kernel是LinkedIn开源的一个深度学习框架内核组件,专注于为大规模语言模型提供高效的训练和推理能力。该项目通过优化底层计算内核,显著提升了模型训练效率,特别是在分布式训练场景下表现突出。
核心更新内容
1. XPU设备支持全面升级
本次版本对Intel XPU(原GPU)设备的支持进行了重要增强:
- 在setup.py中新增了针对XPU设备的安装配置,开发者现在可以更便捷地在XPU环境下部署Liger-Kernel
- 持续集成(CI)流程中增加了XPU测试环境的Docker容器支持,确保代码变更不会影响XPU兼容性
- 移除了部分在XPU设备上无法通过的测试用例,优化了测试流程
这些改进使得Liger-Kernel在异构计算环境中的适应性更强,为开发者提供了更多硬件选择。
2. 新增模型架构支持
v0.5.9版本扩展了对两种重要中文大模型的支持:
GLM-4模型支持
- 实现了GLM-4特有的局部交叉熵(LCE)前向计算逻辑
- 通过函数级导入优化了代码结构,提高了模块化程度
Qwen3模型适配
- 完整支持Qwen3系列模型的训练和推理
- 优化了logits保留逻辑,确保模型训练稳定性
这些新增支持使得Liger-Kernel能够更好地服务于中文NLP场景,为开发者提供了更多模型选择。
3. 训练优化与关键修复
DPO损失函数增强
- 为LigerFusedLinearDPOLoss增加了average_log_prob初始化参数
- 提供了更灵活的损失函数配置选项
交叉熵修复
- 修复了LigerCrossEntropy在reduction='none'模式下的计算问题
- 确保了损失计算的准确性
标签处理优化
- 改进了shift label的处理逻辑
- 提升了序列标注任务的训练稳定性
Gemma3多模态模型
- 调整了收敛测试的容错阈值(atol)
- 提高了多模态场景下的测试稳定性
技术影响与价值
Liger-Kernel v0.5.9的发布标志着该项目在以下几个方面的进步:
-
硬件生态扩展:通过增强XPU支持,降低了使用Intel加速硬件的门槛,为用户提供了更多硬件选择。
-
模型生态丰富:新增的GLM-4和Qwen3支持,特别是对中文大模型的适配,显著提升了框架在中文NLP领域的实用性。
-
训练稳定性提升:多项关键修复和优化使得框架在复杂训练场景下表现更加可靠,特别是对强化学习从人类反馈(RLHF)相关任务的支持更加完善。
对于深度学习从业者而言,这个版本提供了更广泛的模型支持和更稳定的训练体验,特别是在中文NLP和多模态场景下。开发者可以更自信地将Liger-Kernel应用于生产环境,享受其高性能计算带来的效率提升。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1