Liger-Kernel v0.5.9版本发布:新增XPU支持与GLM-4/Qwen3模型适配
2025-06-11 02:44:03作者:农烁颖Land
Liger-Kernel是LinkedIn开源的一个深度学习框架内核组件,专注于为大规模语言模型提供高效的训练和推理能力。该项目通过优化底层计算内核,显著提升了模型训练效率,特别是在分布式训练场景下表现突出。
核心更新内容
1. XPU设备支持全面升级
本次版本对Intel XPU(原GPU)设备的支持进行了重要增强:
- 在setup.py中新增了针对XPU设备的安装配置,开发者现在可以更便捷地在XPU环境下部署Liger-Kernel
- 持续集成(CI)流程中增加了XPU测试环境的Docker容器支持,确保代码变更不会影响XPU兼容性
- 移除了部分在XPU设备上无法通过的测试用例,优化了测试流程
这些改进使得Liger-Kernel在异构计算环境中的适应性更强,为开发者提供了更多硬件选择。
2. 新增模型架构支持
v0.5.9版本扩展了对两种重要中文大模型的支持:
GLM-4模型支持
- 实现了GLM-4特有的局部交叉熵(LCE)前向计算逻辑
- 通过函数级导入优化了代码结构,提高了模块化程度
Qwen3模型适配
- 完整支持Qwen3系列模型的训练和推理
- 优化了logits保留逻辑,确保模型训练稳定性
这些新增支持使得Liger-Kernel能够更好地服务于中文NLP场景,为开发者提供了更多模型选择。
3. 训练优化与关键修复
DPO损失函数增强
- 为LigerFusedLinearDPOLoss增加了average_log_prob初始化参数
- 提供了更灵活的损失函数配置选项
交叉熵修复
- 修复了LigerCrossEntropy在reduction='none'模式下的计算问题
- 确保了损失计算的准确性
标签处理优化
- 改进了shift label的处理逻辑
- 提升了序列标注任务的训练稳定性
Gemma3多模态模型
- 调整了收敛测试的容错阈值(atol)
- 提高了多模态场景下的测试稳定性
技术影响与价值
Liger-Kernel v0.5.9的发布标志着该项目在以下几个方面的进步:
-
硬件生态扩展:通过增强XPU支持,降低了使用Intel加速硬件的门槛,为用户提供了更多硬件选择。
-
模型生态丰富:新增的GLM-4和Qwen3支持,特别是对中文大模型的适配,显著提升了框架在中文NLP领域的实用性。
-
训练稳定性提升:多项关键修复和优化使得框架在复杂训练场景下表现更加可靠,特别是对强化学习从人类反馈(RLHF)相关任务的支持更加完善。
对于深度学习从业者而言,这个版本提供了更广泛的模型支持和更稳定的训练体验,特别是在中文NLP和多模态场景下。开发者可以更自信地将Liger-Kernel应用于生产环境,享受其高性能计算带来的效率提升。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19