Monkey项目中Mini-Monkey模型评测指标复现问题解析
2025-07-08 16:32:46作者:幸俭卉
评测指标差异现象
在复现Monkey项目中Mini-Monkey模型的评测指标时,多位研究人员发现实测结果与论文报告数据存在明显差异。主要差异体现在以下几个数据集上:
- STVQA准确率:论文69.9 vs 实测64.2
- POIE准确率:论文42.9 vs 实测47.8
- FUNSD准确率:论文70.3 vs 实测63.4
- DocVQA测试集:论文87.4 vs 实测86.96
- ChartQA:论文76.5 vs 实测76.2
- OCRBench:论文802 vs 实测800
原因分析与解决方案
经过项目维护者的确认和多次验证,发现评测指标差异主要由以下几个因素导致:
1. 评测脚本版本问题
原始提供的评测脚本与论文中使用的版本存在细微差别。项目方后续更新了评测脚本,使用更新后的脚本可以得到更接近论文报告的结果。
2. 运行环境配置差异
环境配置对评测结果有显著影响,特别是以下关键组件:
- flash-attn版本:推荐使用2.5.8
- PyTorch版本:推荐2.2.2
- transformers版本:推荐4.40.1
- Python版本:推荐3.10.14
- CUDA版本:推荐11.8
3. 模型推理参数设置
对于不同的评测任务,需要采用特定的预处理和后处理策略。例如:
- 在DocVQA和ChartQA评测中,需要使用dynamic_preprocess2处理
- 不同数据集的评测脚本需要针对Mini-Monkey模型进行适配
4. 训练超参数影响
对于重新训练模型的情况,学习率的设置尤为关键。项目维护者建议使用4e-9的学习率在4块GPU上进行训练,才能复现论文中的结果。
最佳实践建议
为了准确复现Mini-Monkey模型的评测指标,建议遵循以下步骤:
- 使用项目方最新提供的评测脚本
- 严格按照推荐的环境配置搭建评测环境
- 对于不同评测任务,使用对应的预处理和后处理方法
- 在模型训练时,注意学习率等关键超参数的设置
- 对于关键评测指标,建议多次运行取平均值以减少随机性影响
通过以上措施,可以最大限度地缩小评测结果与论文报告数据之间的差异,确保研究工作的可重复性和可比性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5