NVIDIA k8s-device-plugin中实现GPU共享与独占的混合部署策略
2025-06-25 09:28:40作者:彭桢灵Jeremy
在Kubernetes集群中管理GPU资源时,我们经常需要同时支持两种使用模式:独占式GPU访问和共享式GPU访问。NVIDIA k8s-device-plugin项目通过多进程服务(MPS)机制实现了这一需求,本文将详细介绍如何在同一集群中配置混合部署策略。
核心概念解析
**MPS(多进程服务)**是NVIDIA提供的一种GPU资源共享机制,它允许多个CUDA进程同时共享单个物理GPU的计算资源。与传统的独占模式相比,MPS能够显著提高GPU利用率,特别适合推理服务等计算密集型但资源需求不饱和的场景。
混合部署架构设计
要实现混合部署,我们需要理解三个关键组件:
- 默认配置:不启用任何共享策略,提供独占式GPU访问
- MPS配置:定义GPU资源的共享比例和命名规则
- 节点标签:通过标签系统控制配置的应用范围
具体实施步骤
1. 初始集群准备
首先确保集群中包含两类GPU节点:
- 标准GPU节点(如配备T4/Tesla等计算卡)
- 已正确安装NVIDIA驱动和CUDA工具包
2. Helm配置定制
通过Helm chart部署时需要特别注意以下配置项:
devicePlugin:
config:
name: device-plugin-config
create: true
default: default
data:
default: |-
version: v1
flags:
migStrategy: none
mps-config: |-
version: v1
sharing:
mps:
renameByDefault: true
resources:
- name: nvidia.com/gpu
replicas: 4
关键参数说明:
renameByDefault:是否自动转换资源名称replicas:单个物理GPU虚拟化的数量migStrategy:MIG分区策略(本例禁用)
3. 节点标签管理
通过kubectl为特定节点添加标签:
kubectl label node <node-name> nvidia.com/device-plugin.config=mps-config
该标签会触发以下变化:
- 自动部署MPS控制守护进程
- 更新节点GPU资源标签
- 启用虚拟GPU资源分配
4. 工作负载调度
应用部署时需明确资源需求:
独占GPU模式:
resources:
limits:
nvidia.com/gpu: 1
共享GPU模式:
resources:
limits:
nvidia.com/gpu.shared: 1
常见问题解决方案
- CDI冲突问题: 当出现CDI设备注入失败时,建议在GPU Operator中禁用CDI功能:
cdi:
enabled: false
- 资源分配异常: 检查节点标签系统是否完整包含:
- nvidia.com/gpu.replicas
- nvidia.com/gpu.sharing-strategy
- nvidia.com/mps.capable
- 调度失败处理: 确保Pod规范中包含正确的运行时配置:
runtimeClassName: nvidia
最佳实践建议
- 生产环境中建议为共享GPU节点设置专属污点(Taint),防止普通工作负载误调度
- 监控GPU显存使用情况,合理设置replicas数量避免OOM
- 考虑使用节点亲和性规则优化工作负载分布
- 定期检查MPS守护进程状态,确保资源共享稳定性
通过这种混合部署策略,用户可以灵活应对不同业务场景的需求,既保证了关键业务的全量GPU性能,又提高了普通业务的资源利用率,实现了GPU资源的价值最大化。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443