NVIDIA k8s-device-plugin中实现GPU共享与独占的混合部署策略
2025-06-25 13:50:09作者:彭桢灵Jeremy
在Kubernetes集群中管理GPU资源时,我们经常需要同时支持两种使用模式:独占式GPU访问和共享式GPU访问。NVIDIA k8s-device-plugin项目通过多进程服务(MPS)机制实现了这一需求,本文将详细介绍如何在同一集群中配置混合部署策略。
核心概念解析
**MPS(多进程服务)**是NVIDIA提供的一种GPU资源共享机制,它允许多个CUDA进程同时共享单个物理GPU的计算资源。与传统的独占模式相比,MPS能够显著提高GPU利用率,特别适合推理服务等计算密集型但资源需求不饱和的场景。
混合部署架构设计
要实现混合部署,我们需要理解三个关键组件:
- 默认配置:不启用任何共享策略,提供独占式GPU访问
- MPS配置:定义GPU资源的共享比例和命名规则
- 节点标签:通过标签系统控制配置的应用范围
具体实施步骤
1. 初始集群准备
首先确保集群中包含两类GPU节点:
- 标准GPU节点(如配备T4/Tesla等计算卡)
- 已正确安装NVIDIA驱动和CUDA工具包
2. Helm配置定制
通过Helm chart部署时需要特别注意以下配置项:
devicePlugin:
config:
name: device-plugin-config
create: true
default: default
data:
default: |-
version: v1
flags:
migStrategy: none
mps-config: |-
version: v1
sharing:
mps:
renameByDefault: true
resources:
- name: nvidia.com/gpu
replicas: 4
关键参数说明:
renameByDefault
:是否自动转换资源名称replicas
:单个物理GPU虚拟化的数量migStrategy
:MIG分区策略(本例禁用)
3. 节点标签管理
通过kubectl为特定节点添加标签:
kubectl label node <node-name> nvidia.com/device-plugin.config=mps-config
该标签会触发以下变化:
- 自动部署MPS控制守护进程
- 更新节点GPU资源标签
- 启用虚拟GPU资源分配
4. 工作负载调度
应用部署时需明确资源需求:
独占GPU模式:
resources:
limits:
nvidia.com/gpu: 1
共享GPU模式:
resources:
limits:
nvidia.com/gpu.shared: 1
常见问题解决方案
- CDI冲突问题: 当出现CDI设备注入失败时,建议在GPU Operator中禁用CDI功能:
cdi:
enabled: false
- 资源分配异常: 检查节点标签系统是否完整包含:
- nvidia.com/gpu.replicas
- nvidia.com/gpu.sharing-strategy
- nvidia.com/mps.capable
- 调度失败处理: 确保Pod规范中包含正确的运行时配置:
runtimeClassName: nvidia
最佳实践建议
- 生产环境中建议为共享GPU节点设置专属污点(Taint),防止普通工作负载误调度
- 监控GPU显存使用情况,合理设置replicas数量避免OOM
- 考虑使用节点亲和性规则优化工作负载分布
- 定期检查MPS守护进程状态,确保资源共享稳定性
通过这种混合部署策略,用户可以灵活应对不同业务场景的需求,既保证了关键业务的全量GPU性能,又提高了普通业务的资源利用率,实现了GPU资源的价值最大化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105