NVIDIA k8s-device-plugin中实现GPU共享与独占的混合部署策略
2025-06-25 00:54:06作者:彭桢灵Jeremy
在Kubernetes集群中管理GPU资源时,我们经常需要同时支持两种使用模式:独占式GPU访问和共享式GPU访问。NVIDIA k8s-device-plugin项目通过多进程服务(MPS)机制实现了这一需求,本文将详细介绍如何在同一集群中配置混合部署策略。
核心概念解析
**MPS(多进程服务)**是NVIDIA提供的一种GPU资源共享机制,它允许多个CUDA进程同时共享单个物理GPU的计算资源。与传统的独占模式相比,MPS能够显著提高GPU利用率,特别适合推理服务等计算密集型但资源需求不饱和的场景。
混合部署架构设计
要实现混合部署,我们需要理解三个关键组件:
- 默认配置:不启用任何共享策略,提供独占式GPU访问
- MPS配置:定义GPU资源的共享比例和命名规则
- 节点标签:通过标签系统控制配置的应用范围
具体实施步骤
1. 初始集群准备
首先确保集群中包含两类GPU节点:
- 标准GPU节点(如配备T4/Tesla等计算卡)
- 已正确安装NVIDIA驱动和CUDA工具包
2. Helm配置定制
通过Helm chart部署时需要特别注意以下配置项:
devicePlugin:
config:
name: device-plugin-config
create: true
default: default
data:
default: |-
version: v1
flags:
migStrategy: none
mps-config: |-
version: v1
sharing:
mps:
renameByDefault: true
resources:
- name: nvidia.com/gpu
replicas: 4
关键参数说明:
renameByDefault:是否自动转换资源名称replicas:单个物理GPU虚拟化的数量migStrategy:MIG分区策略(本例禁用)
3. 节点标签管理
通过kubectl为特定节点添加标签:
kubectl label node <node-name> nvidia.com/device-plugin.config=mps-config
该标签会触发以下变化:
- 自动部署MPS控制守护进程
- 更新节点GPU资源标签
- 启用虚拟GPU资源分配
4. 工作负载调度
应用部署时需明确资源需求:
独占GPU模式:
resources:
limits:
nvidia.com/gpu: 1
共享GPU模式:
resources:
limits:
nvidia.com/gpu.shared: 1
常见问题解决方案
- CDI冲突问题: 当出现CDI设备注入失败时,建议在GPU Operator中禁用CDI功能:
cdi:
enabled: false
- 资源分配异常: 检查节点标签系统是否完整包含:
- nvidia.com/gpu.replicas
- nvidia.com/gpu.sharing-strategy
- nvidia.com/mps.capable
- 调度失败处理: 确保Pod规范中包含正确的运行时配置:
runtimeClassName: nvidia
最佳实践建议
- 生产环境中建议为共享GPU节点设置专属污点(Taint),防止普通工作负载误调度
- 监控GPU显存使用情况,合理设置replicas数量避免OOM
- 考虑使用节点亲和性规则优化工作负载分布
- 定期检查MPS守护进程状态,确保资源共享稳定性
通过这种混合部署策略,用户可以灵活应对不同业务场景的需求,既保证了关键业务的全量GPU性能,又提高了普通业务的资源利用率,实现了GPU资源的价值最大化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1