NVIDIA k8s-device-plugin中实现GPU共享与独占的混合部署策略
2025-06-25 10:55:35作者:彭桢灵Jeremy
在Kubernetes集群中管理GPU资源时,我们经常需要同时支持两种使用模式:独占式GPU访问和共享式GPU访问。NVIDIA k8s-device-plugin项目通过多进程服务(MPS)机制实现了这一需求,本文将详细介绍如何在同一集群中配置混合部署策略。
核心概念解析
**MPS(多进程服务)**是NVIDIA提供的一种GPU资源共享机制,它允许多个CUDA进程同时共享单个物理GPU的计算资源。与传统的独占模式相比,MPS能够显著提高GPU利用率,特别适合推理服务等计算密集型但资源需求不饱和的场景。
混合部署架构设计
要实现混合部署,我们需要理解三个关键组件:
- 默认配置:不启用任何共享策略,提供独占式GPU访问
- MPS配置:定义GPU资源的共享比例和命名规则
- 节点标签:通过标签系统控制配置的应用范围
具体实施步骤
1. 初始集群准备
首先确保集群中包含两类GPU节点:
- 标准GPU节点(如配备T4/Tesla等计算卡)
- 已正确安装NVIDIA驱动和CUDA工具包
2. Helm配置定制
通过Helm chart部署时需要特别注意以下配置项:
devicePlugin:
config:
name: device-plugin-config
create: true
default: default
data:
default: |-
version: v1
flags:
migStrategy: none
mps-config: |-
version: v1
sharing:
mps:
renameByDefault: true
resources:
- name: nvidia.com/gpu
replicas: 4
关键参数说明:
renameByDefault:是否自动转换资源名称replicas:单个物理GPU虚拟化的数量migStrategy:MIG分区策略(本例禁用)
3. 节点标签管理
通过kubectl为特定节点添加标签:
kubectl label node <node-name> nvidia.com/device-plugin.config=mps-config
该标签会触发以下变化:
- 自动部署MPS控制守护进程
- 更新节点GPU资源标签
- 启用虚拟GPU资源分配
4. 工作负载调度
应用部署时需明确资源需求:
独占GPU模式:
resources:
limits:
nvidia.com/gpu: 1
共享GPU模式:
resources:
limits:
nvidia.com/gpu.shared: 1
常见问题解决方案
- CDI冲突问题: 当出现CDI设备注入失败时,建议在GPU Operator中禁用CDI功能:
cdi:
enabled: false
- 资源分配异常: 检查节点标签系统是否完整包含:
- nvidia.com/gpu.replicas
- nvidia.com/gpu.sharing-strategy
- nvidia.com/mps.capable
- 调度失败处理: 确保Pod规范中包含正确的运行时配置:
runtimeClassName: nvidia
最佳实践建议
- 生产环境中建议为共享GPU节点设置专属污点(Taint),防止普通工作负载误调度
- 监控GPU显存使用情况,合理设置replicas数量避免OOM
- 考虑使用节点亲和性规则优化工作负载分布
- 定期检查MPS守护进程状态,确保资源共享稳定性
通过这种混合部署策略,用户可以灵活应对不同业务场景的需求,既保证了关键业务的全量GPU性能,又提高了普通业务的资源利用率,实现了GPU资源的价值最大化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Python小说下载神器:一键获取番茄小说完整内容如何用md2pptx快速将Markdown文档转换为专业PPT演示文稿 📊京东评价自动化工具:用Python脚本解放双手的高效助手三步掌握Payload-Dumper-Android:革新性OTA提取工具的核心价值定位终极Obsidian模板配置指南:10个技巧打造高效个人知识库终极指南:5步解锁Rockchip RK3588全部潜力,快速上手Ubuntu 22.04操作系统WebPlotDigitizer 安装配置指南:从图像中提取数据的开源工具终极FDS入门指南:5步掌握火灾动力学模拟技巧高效获取无损音乐:跨平台FLAC音乐下载工具全解析终极指南:5步复现Spring Boot高危漏洞CVE-2016-1000027
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
339
402
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247