RavenDB 6.2.3版本发布:性能优化与稳定性提升
RavenDB简介
RavenDB是一个高性能、跨平台的NoSQL文档数据库,以其出色的ACID事务支持、分布式架构和内置全文搜索功能而闻名。作为一款面向.NET生态的数据库系统,RavenDB特别适合需要处理复杂数据模型和高并发场景的应用程序。
核心改进与修复
集群与事务管理优化
本次6.2.3版本在集群管理方面做出了重要改进。开发团队引入了集群事务执行大小的限制机制,有效防止了因大事务导致的内存过度消耗问题。同时,调整了集群工作节点和监督节点的采样周期参数,将工作节点采样周期从250毫秒调整为500毫秒,监督节点采样周期从500毫秒调整为1000毫秒,这些调整有助于降低系统开销,提高整体稳定性。
针对分布式环境下的数据一致性问题,修复了在没有集群范围事务时比较交换(compare exchange)逻辑删除(tombstones)无法被清理的问题,确保了分布式环境下的数据一致性。
索引与查询引擎增强
Corax搜索引擎作为RavenDB的核心组件,在本版本中获得了多项改进。修复了在使用动态字段时的内存泄漏问题,并修正了当使用OrderBy子句时TotalResults计算不准确的问题。对于使用标准分析器(StandardAnalyzer)的查询,修复了前导通配符搜索可能返回不同结果的问题。
对于Map-Reduce索引,解决了因引用处理不当导致处理时间延长的问题,并禁用了通过并行模式(side-by-side)重置输出到集合的Map-Reduce索引的能力,防止潜在的数据不一致。
备份与数据可靠性
备份子系统得到了稳定性增强,修复了在备份状态保存失败时重复发送保存命令的问题。计数器功能也获得了修复,解决了可能导致计数器损坏的问题,确保了关键业务数据的准确性。
安全审计增强
安全方面,新增了对客户端证书管理操作的审计日志记录功能,为安全合规提供了更好的支持。同时修复了在双因素认证(2FA)视图中使用退格键的问题,提升了安全相关功能的用户体验。
客户端与API改进
HTTP客户端方面,修复了在使用多获取(Multi-Get)和HTTP缓存时可能出现的空引用异常(NRE)问题。会话API增加了对增量时间序列的删除和流式操作支持,并修正了当使用NoCaching会话参数时的缓存行为,为开发者提供了更一致的行为预期。
管理界面(Studio)改进
管理控制台方面,修复了当使用别名配置键时数据库设置内容不显示的问题,使配置管理更加直观。索引视图现在能正确反映自动索引的变化,提高了运维效率。许可证管理界面现在能显示更多关于开发者许可证的信息,帮助用户更好地理解其授权状态。
底层技术栈更新
作为技术基础的重要更新,RavenDB 6.2.3将.NET运行时升级到了8.0.12版本,带来了性能改进和安全修复。同时移除了单文件应用程序(Single File App)的支持,简化了部署选项。
总结
RavenDB 6.2.3版本是一个以稳定性和性能优化为主的更新,在集群管理、查询性能、数据可靠性和安全性等方面都做出了重要改进。这些变化使得RavenDB在分布式环境下的表现更加稳健,为开发者提供了更可靠的数据库基础设施。对于现有用户而言,升级到这个版本将获得更好的系统稳定性和更一致的行为表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00