ModelScope项目环境变量配置与ONNX Runtime优化指南
2025-05-29 10:02:04作者:姚月梅Lane
环境变量配置:自定义ModelScope下载路径
在使用ModelScope进行模型下载和管理时,默认情况下模型会保存在系统默认路径(通常是C盘)。对于存储空间有限的用户,可以通过设置环境变量来指定自定义存储路径。
配置方法
在Python代码中,可以通过以下方式设置ModelScope的缓存路径:
import os
os.environ["MODELSCOPE_CACHE"] = "D:/your/custom/path" # 替换为你想要的路径
注意事项
- 路径字符串可以使用正斜杠(/)或双反斜杠(\\),但建议使用正斜杠以避免转义问题
- 路径应当提前创建好,确保程序有写入权限
- 建议将这段代码放在程序的最开始部分执行,确保在加载任何模型前已设置好路径
ONNX Runtime后端配置:使用DirectML提供器
对于Windows平台且拥有支持DirectX 12的GPU用户,可以通过配置ONNX Runtime使用DirectML(DML)提供器来加速模型推理。
配置方法
import onnxruntime as ort
# 创建会话选项时指定DML作为执行提供器
sess_options = ort.SessionOptions()
providers = ['DmlExecutionProvider']
session = ort.InferenceSession("model.onnx", sess_options=sess_options, providers=providers)
技术背景
DirectML是微软提供的跨厂商硬件加速API,具有以下优势:
- 支持AMD、Intel和NVIDIA的GPU
- 在Windows平台上性能优化更好
- 可以避免CUDA依赖带来的兼容性问题
使用建议
- 确保系统已安装最新显卡驱动
- 验证GPU是否支持DirectX 12
- 对于复杂模型,可以比较DML与CUDA提供器的性能差异
综合配置示例
以下是一个完整的配置示例,同时设置自定义缓存路径和DML提供器:
import os
import onnxruntime as ort
# 设置ModelScope缓存路径
os.environ["MODELSCOPE_CACHE"] = "D:/AI_Models"
# 配置ONNX Runtime使用DML
sess_options = ort.SessionOptions()
providers = ['DmlExecutionProvider']
# 加载模型
model_path = "D:/AI_Models/your_model.onnx"
session = ort.InferenceSession(model_path, sess_options=sess_options, providers=providers)
通过合理配置这些参数,可以优化ModelScope项目的存储管理和计算性能,特别是在资源受限的环境中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
441
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
395
Ascend Extension for PyTorch
Python
249
285
React Native鸿蒙化仓库
JavaScript
276
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
50
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
678
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
111