ModelScope项目环境变量配置与ONNX Runtime优化指南
2025-05-29 20:14:57作者:姚月梅Lane
环境变量配置:自定义ModelScope下载路径
在使用ModelScope进行模型下载和管理时,默认情况下模型会保存在系统默认路径(通常是C盘)。对于存储空间有限的用户,可以通过设置环境变量来指定自定义存储路径。
配置方法
在Python代码中,可以通过以下方式设置ModelScope的缓存路径:
import os
os.environ["MODELSCOPE_CACHE"] = "D:/your/custom/path" # 替换为你想要的路径
注意事项
- 路径字符串可以使用正斜杠(/)或双反斜杠(\\),但建议使用正斜杠以避免转义问题
- 路径应当提前创建好,确保程序有写入权限
- 建议将这段代码放在程序的最开始部分执行,确保在加载任何模型前已设置好路径
ONNX Runtime后端配置:使用DirectML提供器
对于Windows平台且拥有支持DirectX 12的GPU用户,可以通过配置ONNX Runtime使用DirectML(DML)提供器来加速模型推理。
配置方法
import onnxruntime as ort
# 创建会话选项时指定DML作为执行提供器
sess_options = ort.SessionOptions()
providers = ['DmlExecutionProvider']
session = ort.InferenceSession("model.onnx", sess_options=sess_options, providers=providers)
技术背景
DirectML是微软提供的跨厂商硬件加速API,具有以下优势:
- 支持AMD、Intel和NVIDIA的GPU
- 在Windows平台上性能优化更好
- 可以避免CUDA依赖带来的兼容性问题
使用建议
- 确保系统已安装最新显卡驱动
- 验证GPU是否支持DirectX 12
- 对于复杂模型,可以比较DML与CUDA提供器的性能差异
综合配置示例
以下是一个完整的配置示例,同时设置自定义缓存路径和DML提供器:
import os
import onnxruntime as ort
# 设置ModelScope缓存路径
os.environ["MODELSCOPE_CACHE"] = "D:/AI_Models"
# 配置ONNX Runtime使用DML
sess_options = ort.SessionOptions()
providers = ['DmlExecutionProvider']
# 加载模型
model_path = "D:/AI_Models/your_model.onnx"
session = ort.InferenceSession(model_path, sess_options=sess_options, providers=providers)
通过合理配置这些参数,可以优化ModelScope项目的存储管理和计算性能,特别是在资源受限的环境中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258