GraphQL-Ruby 升级至2.3.10版本后Resolver测试的解决方案
在将GraphQL-Ruby从2.3.7升级到2.3.10版本后,许多开发者遇到了一个常见问题:在RSpec测试中调用Resolver时会抛出"undefined method `types' for nil:NilClass"错误。这个问题源于GraphQL-Ruby内部对Resolver上下文处理方式的变更。
问题背景
GraphQL-Ruby在2.3.8版本中引入了一些内部重构,特别是对Resolver类的处理方式进行了调整。这些变更使得Resolver现在更加严格地依赖于完整的GraphQL查询上下文。当开发者尝试在测试中直接实例化Resolver而不提供完整的上下文时,就会出现上述错误。
问题分析
典型的错误场景出现在这样的测试代码中:
described_class.new(object: nil, field: nil, context: nil).resolve(role: ['evaluation_role'])
在GraphQL-Ruby 2.3.10中,Resolver需要访问GraphQL的类型系统来完成其工作,而直接传入nil作为上下文会导致类型系统不可用。
解决方案
推荐方案:使用run_graphql_field辅助方法
GraphQL-Ruby官方推荐使用内置的测试辅助方法run_graphql_field
来测试Resolver。这种方法模拟了完整的GraphQL查询环境,确保所有必要的上下文都正确设置。
require 'rails_helper'
RSpec.describe Resolvers::Users, type: :graphql do
describe '#resolve' do
subject { run_graphql_field("Query.users", nil, arguments: { role: role }).items }
let!(:user1) { create(:user, role: 'evaluation_role') }
let!(:user2) { create(:user, role: 'evaluation_role') }
context 'when role includes evaluation_role' do
let(:role) { 'evaluation_role' }
it {
expect(subject).to eq [user2, user2]
}
end
end
end
这种方法不仅解决了上下文问题,还使测试更接近实际运行环境,提高了测试的可靠性。
替代方案:手动创建查询上下文
如果由于某些原因无法使用run_graphql_field
,可以手动创建一个查询上下文对象:
require 'rails_helper'
RSpec.describe Resolvers::Users do
describe '#resolve' do
subject { resolver.resolve(role: role) }
let(:query_ctx) { GraphQL::Query.new(TofflerSchema, "{ __typename }").context }
let(:resolver) { described_class.new(object: nil, context: query_ctx, field: nil) }
let!(:user1) { create(:user, role: 'evaluation_role') }
let!(:user2) { create(:user, role: 'evaluation_role') }
context 'when role includes evaluation_role' do
let(:role) { 'evaluation_role' }
it {
expect(subject).to eq [user2, user1]
}
end
end
end
需要注意的是,这种方法依赖于GraphQL-Ruby的内部API,可能在未来的版本中发生变化。
最佳实践建议
-
优先使用官方测试辅助方法:
run_graphql_field
等辅助方法是专门为测试GraphQL组件设计的,能提供最接近生产环境的测试条件。 -
避免直接实例化GraphQL组件:在测试中直接创建Resolver、Type等GraphQL组件实例可能会导致意外的上下文依赖问题。
-
保持测试环境一致性:确保测试环境尽可能模拟真实的GraphQL查询执行流程,这样可以发现更多潜在问题。
-
关注版本升级说明:GraphQL-Ruby的版本升级有时会包含重要的行为变更,仔细阅读CHANGELOG可以帮助避免类似问题。
总结
GraphQL-Ruby 2.3.10对Resolver的上下文处理更加严格,这实际上是一个积极的改进,促使开发者编写更健壮、更接近真实环境的测试代码。通过采用官方推荐的测试方法,不仅可以解决当前的兼容性问题,还能提高测试的质量和可靠性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









