Ollama-WebUI 中 DuckDuckGo 搜索服务问题分析与解决方案
在开源项目 Ollama-WebUI 中,用户报告了一个关于 DuckDuckGo 搜索服务的问题。当使用 web 搜索服务时,系统会返回"error searching"和"No search results found"的错误信息。经过深入分析,我们发现这是由于 DuckDuckGo API 版本和配置问题导致的。
问题根源分析
问题的核心在于 DuckDuckGo 搜索服务的实现方式。当前版本使用的是 API 后端模式,这种模式在某些情况下会出现连接超时或返回空结果的情况。特别是在 Docker 环境中运行时,网络延迟可能会加剧这一问题。
技术解决方案
我们提出了一个多层次的解决方案来改善搜索服务的可靠性:
-
版本升级:将 DuckDuckGo 搜索组件升级到 8.0.0 版本,这个版本提供了更稳定的 API 接口和更好的错误处理机制。
-
超时设置优化:在检索模块中增加了超时时间设置,从默认值提高到 15 秒。这个调整可以应对网络延迟问题,特别是在容器化环境中。
-
后端模式切换:将搜索后端从"api"模式改为"html"模式。HTML 模式直接解析 DuckDuckGo 的网页搜索结果,虽然可能不如 API 模式规范,但在实际测试中表现更加稳定可靠。
-
时间限制参数:新增了 timelimit 参数设置为"y",这个参数可以确保获取最新的搜索结果,避免返回过时的缓存内容。
实现细节
在代码实现层面,主要修改了位于 /backend/open_webui/retrieval/web/duckduckgo.py 文件中的搜索逻辑。新的实现采用了更健壮的错误处理机制,同时优化了参数配置。
验证结果
经过上述修改后,测试表明 DuckDuckGo 搜索服务能够稳定返回结果。用户反馈显示,在使用 Llama3.2-3B 模型进行搜索时,系统能够正确获取并显示搜索结果,解决了之前的问题。
最佳实践建议
对于在类似环境中部署 Ollama-WebUI 的用户,我们建议:
- 定期更新 DuckDuckGo 搜索组件
- 根据实际网络环境调整超时参数
- 在 API 模式不稳定时考虑切换到 HTML 模式
- 监控搜索服务的性能指标,及时调整配置参数
这个解决方案不仅解决了当前的问题,还为未来可能出现的类似搜索服务问题提供了参考框架。开发团队已经将这个修复合并到开发分支中,将在下一个稳定版本中发布。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00