HeteroFL 开源项目使用指南
2024-08-16 14:39:32作者:邓越浪Henry
项目介绍
HeteroFL 是一个用于异构客户端的计算和通信高效的联邦学习框架。该项目旨在解决在移动电话和物联网设备等异构客户端上训练机器学习模型的问题。HeteroFL 允许训练具有不同计算复杂度的异构本地模型,同时仍然生成一个单一的全局推理模型。
项目快速启动
环境配置
首先,克隆项目仓库到本地:
git clone https://github.com/dem123456789/HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients.git
cd HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients
安装所需的依赖包:
pip install -r requirements.txt
训练模型
以下是一个示例命令,用于在 MNIST 数据集上训练一个 CNN 模型:
python train_classifier_fed.py --data_name MNIST --model_name conv --control_name 1_100_0.1_iid_fix_a2-b8_bn_1_1
应用案例和最佳实践
应用案例
HeteroFL 可以应用于多种场景,例如:
- 物联网设备:在资源受限的物联网设备上进行模型训练。
- 移动应用:在移动设备上进行隐私保护的机器学习模型训练。
最佳实践
- 模型选择:根据设备的计算能力选择合适的模型复杂度。
- 数据分布:考虑数据在不同设备上的分布情况,选择合适的联邦学习策略。
典型生态项目
HeteroFL 可以与其他联邦学习相关的开源项目结合使用,例如:
- TensorFlow Federated:一个用于联邦学习的 TensorFlow 框架。
- PySyft:一个用于隐私保护机器学习的开源库。
通过结合这些项目,可以进一步增强 HeteroFL 的功能和应用范围。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19