PyTerrier 使用教程
2024-09-18 20:18:58作者:韦蓉瑛
1. 项目介绍
PyTerrier 是一个基于 Python 的信息检索实验框架,构建在 Terrier 信息检索平台之上。它提供了一个强大的 API,用于执行信息检索实验,支持多种检索方法和评估指标。PyTerrier 的主要功能包括索引创建、检索、评估和实验比较。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 和 Java。然后,你可以通过 pip 安装 PyTerrier:
pip install python-terrier
创建索引
以下是一个简单的示例,展示如何从 TREC 格式的集合创建索引:
import pyterrier as pt
# 初始化 PyTerrier
pt.init()
# 创建索引
indexer = pt.TRECCollectionIndexer("./path/to/index")
index_ref = indexer.index("./path/to/collection")
检索和评估
接下来,你可以使用创建的索引进行检索,并评估检索结果:
# 读取查询和相关性评估文件
topics = pt.io.read_topics("./path/to/topics.txt")
qrels = pt.io.read_qrels("./path/to/qrels.txt")
# 创建检索器
BM25_r = pt.BatchRetrieve(index_ref, wmodel="BM25")
# 执行检索
res = BM25_r.transform(topics)
# 评估结果
pt.Utils.evaluate(res, qrels, metrics=['map'])
3. 应用案例和最佳实践
实验比较
PyTerrier 提供了一个 Experiment 函数,允许你在相同的查询和相关性评估上比较多种检索方法:
pt.Experiment([BM25_r, PL2_r], topics, qrels, ["map", "ndcg"])
复杂检索管道
PyTerrier 支持使用 Python 操作符(如 >>)来构建复杂的检索管道。例如,应用顺序依赖模型或查询扩展过程:
sdm_bm25 = pt.rewrite.SDM() >> pt.BatchRetrieve(index_ref, wmodel="BM25")
bo1_qe = BM25_r >> pt.rewrite.Bo1QueryExpansion() >> BM25_r
4. 典型生态项目
神经重排序和密集检索
PyTerrier 提供了多个插件,支持 BERT、T5、ColBERT、ANCE 等神经网络模型,用于密集检索和重排序。例如:
- PyTerrier_ANCE: 密集检索
- PyTerrier_ColBERT: 密集检索和神经重排序
学习排序
PyTerrier 支持构建复杂的学习排序管道,例如结合两个特征并将其用于学习:
two_features = BM25_r >> (pt.BatchRetrieve(index_ref, wmodel="DirichletLM") ** pt.BatchRetrieve(index_ref, wmodel="PL2"))
通过这些模块,你可以快速上手并深入使用 PyTerrier 进行信息检索实验和研究。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
495
3.63 K
Ascend Extension for PyTorch
Python
300
336
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
475
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
301
127
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
871