Redis/Rueidis 项目中的 JSON 切片解码优化
2025-06-29 07:18:02作者:郁楠烈Hubert
在 Redis/Rueidis 项目中,开发者们最近讨论了一个关于 JSON 数据解码的优化方案。这个方案主要解决了在处理 Redis 返回的多个 JSON 数据时,如何高效地将它们解码为 Go 语言中的结构体切片的问题。
背景与问题
在使用 Redis 的 MGET 命令获取多个键的值时,如果这些值都是 JSON 格式的结构体实例,开发者希望能够直接将结果解码到一个结构体切片中。然而,现有的 DecodeJSON 方法只能处理单个 JSON 字符串,无法直接处理包含多个 JSON 字符串的数组结果。
例如,当 key1 和 key2 的值都是 X 结构体的实例时:
type X struct {
Name string
}
开发者希望这样使用:
xs := make([]*X, 0)
if err := redisClient.Do(ctx, s.redisClient.B().Mget().Key("key1", "key2").Build()).DecodeJSON(xs); err != nil {
return err
}
但这种方法会失败,因为 DecodeJSON 无法直接处理切片。
解决方案
项目维护者提出了一个清晰且类型安全的解决方案:创建一个名为 DecodeSliceOfJSON 的辅助函数。这个函数专门用于处理 Redis 返回的数组结果,并将每个元素解码为指定的结构体类型。
func DecodeSliceOfJSON[T any](resp rueidis.RedisResult, target *[]*T) error {
arr, err := resp.ToArray()
if err != nil {
return err
}
xs := make([]*T, len(arr))
for i, a := range arr {
if err = a.DecodeJSON(xs[i]); err != nil && !rueidis.IsRedisNil(err) {
return err
}
}
*target = xs
return nil
}
使用方式如下:
var xs []*X
err := DecodeSliceOfJSON(client.Do(context.Background(), client.B().Mget().Key("key1", "key2").Build()), &xs)
设计考量
这个解决方案有几个优点:
- 类型安全:使用了 Go 的泛型特性,确保类型安全
- 清晰明确:功能单一且明确,不会产生歧义
- 错误处理完善:正确处理了 Redis 返回的 nil 值情况
- 性能考虑:预先分配了切片空间,避免多次内存分配
相比其他数据库库(如 sqlx)提供的复杂扫描功能,这个解决方案更加轻量且专注于 Redis 特定场景的需求。它避免了使用反射包带来的复杂性和潜在的性能开销,同时提供了足够的灵活性来满足大多数使用场景。
实际应用
在实际开发中,这个辅助函数可以大大简化从 Redis 获取并解码多个 JSON 数据的流程。开发者不再需要手动遍历结果数组并对每个元素单独解码,减少了样板代码的数量,提高了代码的可读性和可维护性。
这个改进体现了 Redis/Rueidis 项目对开发者体验的重视,以及在不牺牲性能的前提下提供更友好 API 的设计理念。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248