CaffeJS 使用教程
1. 项目介绍
CaffeJS 是一个开源项目,旨在将 Caffe 模型移植到浏览器中运行,使用的是一个修改版的 ConvNetJS(由 Andrej Karpathy 开发)。该项目的目标是帮助初学者通过浏览器轻松进入深度神经网络领域。CaffeJS 允许用户在浏览器中加载预训练的深度神经网络模型,并进行前向和后向传播,同时还可以可视化模型的结构、激活和过滤器。
2. 项目快速启动
2.1 安装依赖
首先,克隆 CaffeJS 仓库到本地:
git clone https://github.com/chaosmail/caffejs.git
cd caffejs
然后,安装项目所需的依赖:
npm install
2.2 运行项目
在安装完依赖后,可以通过以下命令启动项目:
npm start
这将启动一个本地服务器,你可以在浏览器中访问 http://localhost:3000 来查看和运行 CaffeJS 的示例。
3. 应用案例和最佳实践
3.1 图像分类
CaffeJS 提供了在浏览器中进行图像分类的示例,使用的是 GoogLeNet 模型。你可以通过摄像头捕捉图像,并在浏览器中实时进行分类。
3.2 DeepDream
CaffeJS 还支持在浏览器中运行 DeepDream 算法,使用的是 GoogLeNet 模型。你可以上传一张图片,并在浏览器中生成 DeepDream 效果。
3.3 模型可视化
CaffeJS 允许用户在浏览器中可视化深度学习模型的结构,包括网络的层级、参数数量和内存占用等信息。这对于理解和调试深度学习模型非常有帮助。
4. 典型生态项目
4.1 ConvNetJS
ConvNetJS 是由 Andrej Karpathy 开发的一个用于在浏览器中运行深度学习模型的 JavaScript 库。CaffeJS 基于 ConvNetJS 进行了修改,以支持 Caffe 模型的加载和运行。
4.2 Caffe
Caffe 是一个由 Berkeley Vision and Learning Center (BVLC) 开发的深度学习框架,广泛用于图像分类和计算机视觉任务。CaffeJS 允许用户在浏览器中加载和运行 Caffe 模型,从而扩展了 Caffe 的应用场景。
4.3 TensorFlow.js
TensorFlow.js 是 Google 开发的一个用于在浏览器和 Node.js 中运行机器学习模型的 JavaScript 库。虽然 TensorFlow.js 和 CaffeJS 的目标相似,但它们在实现和使用上有一些不同。CaffeJS 专注于 Caffe 模型的移植,而 TensorFlow.js 则支持更多的模型格式和功能。
通过以上教程,你可以快速上手 CaffeJS,并在浏览器中运行和调试深度学习模型。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00