CaffeJS 使用教程
1. 项目介绍
CaffeJS 是一个开源项目,旨在将 Caffe 模型移植到浏览器中运行,使用的是一个修改版的 ConvNetJS(由 Andrej Karpathy 开发)。该项目的目标是帮助初学者通过浏览器轻松进入深度神经网络领域。CaffeJS 允许用户在浏览器中加载预训练的深度神经网络模型,并进行前向和后向传播,同时还可以可视化模型的结构、激活和过滤器。
2. 项目快速启动
2.1 安装依赖
首先,克隆 CaffeJS 仓库到本地:
git clone https://github.com/chaosmail/caffejs.git
cd caffejs
然后,安装项目所需的依赖:
npm install
2.2 运行项目
在安装完依赖后,可以通过以下命令启动项目:
npm start
这将启动一个本地服务器,你可以在浏览器中访问 http://localhost:3000 来查看和运行 CaffeJS 的示例。
3. 应用案例和最佳实践
3.1 图像分类
CaffeJS 提供了在浏览器中进行图像分类的示例,使用的是 GoogLeNet 模型。你可以通过摄像头捕捉图像,并在浏览器中实时进行分类。
3.2 DeepDream
CaffeJS 还支持在浏览器中运行 DeepDream 算法,使用的是 GoogLeNet 模型。你可以上传一张图片,并在浏览器中生成 DeepDream 效果。
3.3 模型可视化
CaffeJS 允许用户在浏览器中可视化深度学习模型的结构,包括网络的层级、参数数量和内存占用等信息。这对于理解和调试深度学习模型非常有帮助。
4. 典型生态项目
4.1 ConvNetJS
ConvNetJS 是由 Andrej Karpathy 开发的一个用于在浏览器中运行深度学习模型的 JavaScript 库。CaffeJS 基于 ConvNetJS 进行了修改,以支持 Caffe 模型的加载和运行。
4.2 Caffe
Caffe 是一个由 Berkeley Vision and Learning Center (BVLC) 开发的深度学习框架,广泛用于图像分类和计算机视觉任务。CaffeJS 允许用户在浏览器中加载和运行 Caffe 模型,从而扩展了 Caffe 的应用场景。
4.3 TensorFlow.js
TensorFlow.js 是 Google 开发的一个用于在浏览器和 Node.js 中运行机器学习模型的 JavaScript 库。虽然 TensorFlow.js 和 CaffeJS 的目标相似,但它们在实现和使用上有一些不同。CaffeJS 专注于 Caffe 模型的移植,而 TensorFlow.js 则支持更多的模型格式和功能。
通过以上教程,你可以快速上手 CaffeJS,并在浏览器中运行和调试深度学习模型。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00