Apache Pinot逻辑表功能增强:InstanceRequest支持多表查询
背景与需求
在分布式OLAP系统Apache Pinot中,InstanceRequest是Broker向Server节点发送查询请求的核心数据结构。在传统设计中,该结构仅支持单表查询的场景,这限制了系统处理逻辑表(Logical Table)的能力。逻辑表是一种将多个物理表在逻辑上统一视图的抽象,需要查询引擎能够同时处理多个底层物理表的数据。
技术实现方案
数据结构设计
为了实现多表查询支持,Pinot社区引入了两个关键改进:
-
TableSegmentsInfo结构:新建的Thrift协议结构,包含两个核心字段:
- 表名(tableName):标识目标物理表
- 段列表(segments):该表中需要查询的特定数据段
-
InstanceRequest扩展:在原有InstanceRequest结构中新增tableSegmentsInfoList字段,类型为TableSegmentsInfo的列表。这个设计保持了向后兼容性,原有单表查询仍可通过原有字段实现。
协议层变更
Thrift协议定义变更体现在三个层面:
- 新增TableSegmentsInfo结构体定义
- 在InstanceRequest中新增可选字段
- 保持原有instanceQuery字段的兼容性
这种设计允许系统逐步迁移到新协议,同时支持新旧客户端和服务端的混合部署场景。
技术价值
这项改进为Pinot带来了三个重要能力提升:
-
逻辑表查询支持:使系统能够处理跨多个物理表的联合查询,为上层提供统一的逻辑视图。
-
查询优化空间:Server节点可以基于完整的表段信息进行更优的查询计划生成,特别是对于涉及多表join的场景。
-
资源调度优化:Broker可以更精确地将查询分片发送到包含相关数据段的Server节点,减少网络传输开销。
实现考量
在实际实现中,开发团队需要注意几个关键点:
-
版本兼容性:确保新增字段不影响旧版本客户端的正常使用。
-
序列化效率:由于Thrift协议的紧凑二进制特性,需要评估列表结构对序列化性能的影响。
-
查询路由优化:在多表场景下,Broker需要更智能的路由策略来确保查询被发送到正确的Server节点。
未来演进
这一基础架构改进为Pinot打开了多个发展方向:
-
物化视图支持:可以基于多表查询能力构建更复杂的物化视图。
-
分布式事务:为跨表ACID操作提供底层支持。
-
动态表扩展:支持运行时动态添加/移除逻辑表成员。
这项改进体现了Pinot作为现代OLAP系统在架构设计上的前瞻性,为后续更复杂的数据分析场景奠定了基础。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0315- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









