Apache Pinot逻辑表功能增强:InstanceRequest支持多表查询
背景与需求
在分布式OLAP系统Apache Pinot中,InstanceRequest是Broker向Server节点发送查询请求的核心数据结构。在传统设计中,该结构仅支持单表查询的场景,这限制了系统处理逻辑表(Logical Table)的能力。逻辑表是一种将多个物理表在逻辑上统一视图的抽象,需要查询引擎能够同时处理多个底层物理表的数据。
技术实现方案
数据结构设计
为了实现多表查询支持,Pinot社区引入了两个关键改进:
-
TableSegmentsInfo结构:新建的Thrift协议结构,包含两个核心字段:
- 表名(tableName):标识目标物理表
- 段列表(segments):该表中需要查询的特定数据段
-
InstanceRequest扩展:在原有InstanceRequest结构中新增tableSegmentsInfoList字段,类型为TableSegmentsInfo的列表。这个设计保持了向后兼容性,原有单表查询仍可通过原有字段实现。
协议层变更
Thrift协议定义变更体现在三个层面:
- 新增TableSegmentsInfo结构体定义
- 在InstanceRequest中新增可选字段
- 保持原有instanceQuery字段的兼容性
这种设计允许系统逐步迁移到新协议,同时支持新旧客户端和服务端的混合部署场景。
技术价值
这项改进为Pinot带来了三个重要能力提升:
-
逻辑表查询支持:使系统能够处理跨多个物理表的联合查询,为上层提供统一的逻辑视图。
-
查询优化空间:Server节点可以基于完整的表段信息进行更优的查询计划生成,特别是对于涉及多表join的场景。
-
资源调度优化:Broker可以更精确地将查询分片发送到包含相关数据段的Server节点,减少网络传输开销。
实现考量
在实际实现中,开发团队需要注意几个关键点:
-
版本兼容性:确保新增字段不影响旧版本客户端的正常使用。
-
序列化效率:由于Thrift协议的紧凑二进制特性,需要评估列表结构对序列化性能的影响。
-
查询路由优化:在多表场景下,Broker需要更智能的路由策略来确保查询被发送到正确的Server节点。
未来演进
这一基础架构改进为Pinot打开了多个发展方向:
-
物化视图支持:可以基于多表查询能力构建更复杂的物化视图。
-
分布式事务:为跨表ACID操作提供底层支持。
-
动态表扩展:支持运行时动态添加/移除逻辑表成员。
这项改进体现了Pinot作为现代OLAP系统在架构设计上的前瞻性,为后续更复杂的数据分析场景奠定了基础。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00