Tortoise-ORM中自定义主键生成策略的实现方法
在使用Tortoise-ORM时,开发者可能会遇到需要自定义主键生成策略的情况。本文将以Snowflake算法为例,详细介绍如何在Tortoise-ORM中正确实现自定义主键生成。
问题背景
在数据库设计中,主键的生成策略有多种选择。Snowflake算法是一种分布式ID生成算法,它能够生成全局唯一的64位整数ID,非常适合分布式系统使用。该算法生成的ID包含时间戳、机器ID、进程ID和序列号等信息。
当开发者尝试在Tortoise-ORM中使用Snowflake算法作为主键生成策略时,可能会发现实际生成的ID与预期不符,数据库仍然使用了自增序列。
问题原因
Tortoise-ORM对于整数类型的主键字段有一个默认行为:当字段类型为整数且作为主键时,会自动设置generated=True。这个参数表示主键值将由数据库自动生成,而不是由应用程序提供。
这种设计对于简单的自增ID场景非常方便,但当我们需要使用自定义ID生成算法时,就会产生冲突。
解决方案
要解决这个问题,需要显式地设置generated=False参数。这会告诉Tortoise-ORM不要依赖数据库生成主键值,而是使用我们提供的默认值生成函数。
以下是正确的字段定义方式:
class User(Model):
id = fields.BigIntField(primary_key=True, default=new_id, generated=False)
username = fields.CharField(32, unique=True)
Snowflake算法实现示例
下面是一个完整的Snowflake算法实现示例,可以直接在项目中使用:
import time
import os
# 初始化参数
machine_counter = 0
machine_id = 0 # 可根据实际环境配置
epoch = 1609459200000 # 2021-01-01 00:00:00 UTC
def new_id():
global machine_counter
# 生成64位ID
return (
((int(time.time() * 1000) - epoch) << 22) |
((machine_id % 32) << 17) |
((os.getpid() % 32) << 12) |
((machine_counter := machine_counter + 1) % 1024)
)
使用注意事项
-
分布式环境:在多机部署时,需要确保每台服务器的
machine_id不同,通常可以通过环境变量或配置文件设置。 -
时钟回拨:Snowflake算法对系统时钟敏感,如果发生时钟回拨,可能导致ID重复。生产环境中需要增加时钟回拨检测和处理逻辑。
-
性能考虑:虽然Snowflake算法性能很高,但在极高并发场景下,可以考虑使用批量生成ID的策略。
-
迁移兼容性:如果从自增ID迁移到Snowflake ID,需要注意外键关系的处理和数据迁移策略。
总结
通过正确设置generated=False参数,我们可以在Tortoise-ORM中自由使用各种自定义主键生成策略。Snowflake算法只是其中一种选择,开发者可以根据项目需求选择UUID、ULID等其他分布式ID方案。
理解ORM框架的默认行为并根据实际需求进行调整,是高效使用ORM框架的重要技能。希望本文能帮助开发者更好地掌握Tortoise-ORM的主键生成机制。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00