YellowFin_Pytorch 开源项目教程
2024-09-18 17:30:32作者:裘晴惠Vivianne
项目介绍
YellowFin 是一个开源的优化器项目,主要用于深度学习模型的训练。它通过自适应的学习率和动量调整,提高了训练过程的效率和稳定性。YellowFin 项目由 JianGoForIt 开发,并在 GitHub 上开源,地址为:https://github.com/JianGoForIt/YellowFin_Pytorch。
YellowFin 优化器基于动量 SGD,无需手动指定学习率和动量。它通过实时测量目标函数的地形,并利用局部二次逼近法调整动量和学习率。YellowFin 优化器可以直接在 PyTorch 中使用,与 PyTorch 的自动求导机制完美结合。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 YellowFin:
pip install git+https://github.com/JianGoForIt/YellowFin_Pytorch.git
使用示例
以下是一个简单的使用 YellowFin 优化器的示例代码:
import torch
import torch.nn as nn
import torch.optim as optim
from yellowfin import YFOptimizer
# 定义一个简单的神经网络
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = nn.Linear(10, 1)
def forward(self, x):
return self.fc(x)
# 创建模型和数据
model = SimpleNet()
data = torch.randn(5, 10)
target = torch.randn(5, 1)
# 使用 YellowFin 优化器
optimizer = YFOptimizer(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
optimizer.zero_grad()
output = model(data)
loss = (output - target).pow(2).mean()
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Loss: {loss.item()}")
应用案例和最佳实践
应用案例
YellowFin 优化器在多个深度学习任务中表现出色,特别是在大规模数据集和复杂模型上。例如,在图像识别任务中,使用 YellowFin 优化器可以显著减少训练时间,同时保持模型的准确性。
最佳实践
- 调整学习率:YellowFin 优化器会自动调整学习率,但初始学习率的设置仍然很重要。建议从较小的学习率开始,逐步增加。
- 监控训练过程:使用 TensorBoard 等工具监控训练过程中的损失和梯度,以确保优化器正常工作。
- 批量大小:适当调整批量大小,以平衡训练速度和内存使用。
典型生态项目
YellowFin 优化器可以与其他深度学习框架和工具集成,形成强大的生态系统。以下是一些典型的生态项目:
- PyTorch:YellowFin 优化器可以直接在 PyTorch 中使用,与 PyTorch 的自动求导机制完美结合。
- TensorFlow:虽然 YellowFin 最初是为 PyTorch 设计的,但可以通过一些适配工作在 TensorFlow 中使用。
- Horovod:与分布式训练框架 Horovod 结合,可以进一步提高训练效率。
通过这些生态项目的支持,YellowFin 优化器可以在更广泛的场景中发挥作用,提升深度学习模型的训练效果。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492