YellowFin_Pytorch 开源项目教程
2024-09-18 19:46:39作者:裘晴惠Vivianne
项目介绍
YellowFin 是一个开源的优化器项目,主要用于深度学习模型的训练。它通过自适应的学习率和动量调整,提高了训练过程的效率和稳定性。YellowFin 项目由 JianGoForIt 开发,并在 GitHub 上开源,地址为:https://github.com/JianGoForIt/YellowFin_Pytorch。
YellowFin 优化器基于动量 SGD,无需手动指定学习率和动量。它通过实时测量目标函数的地形,并利用局部二次逼近法调整动量和学习率。YellowFin 优化器可以直接在 PyTorch 中使用,与 PyTorch 的自动求导机制完美结合。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 YellowFin:
pip install git+https://github.com/JianGoForIt/YellowFin_Pytorch.git
使用示例
以下是一个简单的使用 YellowFin 优化器的示例代码:
import torch
import torch.nn as nn
import torch.optim as optim
from yellowfin import YFOptimizer
# 定义一个简单的神经网络
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = nn.Linear(10, 1)
def forward(self, x):
return self.fc(x)
# 创建模型和数据
model = SimpleNet()
data = torch.randn(5, 10)
target = torch.randn(5, 1)
# 使用 YellowFin 优化器
optimizer = YFOptimizer(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
optimizer.zero_grad()
output = model(data)
loss = (output - target).pow(2).mean()
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Loss: {loss.item()}")
应用案例和最佳实践
应用案例
YellowFin 优化器在多个深度学习任务中表现出色,特别是在大规模数据集和复杂模型上。例如,在图像识别任务中,使用 YellowFin 优化器可以显著减少训练时间,同时保持模型的准确性。
最佳实践
- 调整学习率:YellowFin 优化器会自动调整学习率,但初始学习率的设置仍然很重要。建议从较小的学习率开始,逐步增加。
- 监控训练过程:使用 TensorBoard 等工具监控训练过程中的损失和梯度,以确保优化器正常工作。
- 批量大小:适当调整批量大小,以平衡训练速度和内存使用。
典型生态项目
YellowFin 优化器可以与其他深度学习框架和工具集成,形成强大的生态系统。以下是一些典型的生态项目:
- PyTorch:YellowFin 优化器可以直接在 PyTorch 中使用,与 PyTorch 的自动求导机制完美结合。
- TensorFlow:虽然 YellowFin 最初是为 PyTorch 设计的,但可以通过一些适配工作在 TensorFlow 中使用。
- Horovod:与分布式训练框架 Horovod 结合,可以进一步提高训练效率。
通过这些生态项目的支持,YellowFin 优化器可以在更广泛的场景中发挥作用,提升深度学习模型的训练效果。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
257
2.51 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
94
121
暂无简介
Dart
552
123
React Native鸿蒙化仓库
JavaScript
218
301
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
595
131
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
410
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.77 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
153
204