YellowFin_Pytorch 开源项目教程
2024-09-18 15:57:23作者:裘晴惠Vivianne
项目介绍
YellowFin 是一个开源的优化器项目,主要用于深度学习模型的训练。它通过自适应的学习率和动量调整,提高了训练过程的效率和稳定性。YellowFin 项目由 JianGoForIt 开发,并在 GitHub 上开源,地址为:https://github.com/JianGoForIt/YellowFin_Pytorch。
YellowFin 优化器基于动量 SGD,无需手动指定学习率和动量。它通过实时测量目标函数的地形,并利用局部二次逼近法调整动量和学习率。YellowFin 优化器可以直接在 PyTorch 中使用,与 PyTorch 的自动求导机制完美结合。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 YellowFin:
pip install git+https://github.com/JianGoForIt/YellowFin_Pytorch.git
使用示例
以下是一个简单的使用 YellowFin 优化器的示例代码:
import torch
import torch.nn as nn
import torch.optim as optim
from yellowfin import YFOptimizer
# 定义一个简单的神经网络
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = nn.Linear(10, 1)
def forward(self, x):
return self.fc(x)
# 创建模型和数据
model = SimpleNet()
data = torch.randn(5, 10)
target = torch.randn(5, 1)
# 使用 YellowFin 优化器
optimizer = YFOptimizer(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
optimizer.zero_grad()
output = model(data)
loss = (output - target).pow(2).mean()
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Loss: {loss.item()}")
应用案例和最佳实践
应用案例
YellowFin 优化器在多个深度学习任务中表现出色,特别是在大规模数据集和复杂模型上。例如,在图像识别任务中,使用 YellowFin 优化器可以显著减少训练时间,同时保持模型的准确性。
最佳实践
- 调整学习率:YellowFin 优化器会自动调整学习率,但初始学习率的设置仍然很重要。建议从较小的学习率开始,逐步增加。
- 监控训练过程:使用 TensorBoard 等工具监控训练过程中的损失和梯度,以确保优化器正常工作。
- 批量大小:适当调整批量大小,以平衡训练速度和内存使用。
典型生态项目
YellowFin 优化器可以与其他深度学习框架和工具集成,形成强大的生态系统。以下是一些典型的生态项目:
- PyTorch:YellowFin 优化器可以直接在 PyTorch 中使用,与 PyTorch 的自动求导机制完美结合。
- TensorFlow:虽然 YellowFin 最初是为 PyTorch 设计的,但可以通过一些适配工作在 TensorFlow 中使用。
- Horovod:与分布式训练框架 Horovod 结合,可以进一步提高训练效率。
通过这些生态项目的支持,YellowFin 优化器可以在更广泛的场景中发挥作用,提升深度学习模型的训练效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705