深入理解Annotated-Transformer中的注意力掩码机制
在Transformer架构的实现中,注意力掩码(Attention Mask)是一个关键但容易被忽视的技术细节。本文将以harvardnlp/annotated-transformer项目为例,深入解析解码器中两种不同类型的注意力机制及其掩码应用方式。
解码器层的注意力结构
Transformer解码器包含两种核心注意力模块:
- 掩码多头注意力(Masked Multi-Head Attention)
- 普通多头注意力(Multi-Head Attention)
这两种结构在实现上看似相似,但在功能和应用场景上存在重要差异。
掩码多头注意力的双重作用
掩码多头注意力在解码器中承担着两个关键功能:
-
填充位置掩码(Padding Mask):防止模型关注输入序列中的填充位置(padded positions),这些位置通常是为了保持批次处理时序列长度一致而添加的无意义符号。
-
序列顺序掩码(Sequence Mask):确保解码器在预测当前位置时,只能关注该位置之前的token,而不能"偷看"未来的信息。这种掩码通常采用上三角矩阵的形式实现,对角线以上的位置被设置为负无穷。
在annotated-transformer的实现中,这种双重掩码通过tgt_mask参数实现:
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
普通多头注意力的作用
解码器中的第二个注意力层是标准的跨注意力机制,它连接编码器和解码器:
- 查询(Query)来自解码器的输出
- 键(Key)和值(Value)来自编码器的最终输出(memory)
这个注意力层只使用填充位置掩码(通过src_mask参数),不应用序列顺序掩码:
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
实现细节对比
| 特性 | 掩码多头注意力 | 普通多头注意力 |
|---|---|---|
| 输入来源 | 解码器自身 | 编码器输出 |
| 掩码类型 | tgt_mask (双重掩码) | src_mask (填充掩码) |
| 是否限制未来信息 | 是 | 否 |
| 实现位置 | 解码器第一个子层 | 解码器第二个子层 |
实际应用中的考虑
理解这两种注意力机制的区别对于正确实现Transformer模型至关重要:
-
在训练阶段,必须正确应用序列顺序掩码,否则模型会通过"作弊"获得未来信息,导致评估指标虚高。
-
在推理阶段,虽然序列顺序掩码仍然需要,但由于是逐步生成输出,实现方式会有所不同。
-
对于不同长度的输入序列,填充掩码的处理需要特别注意,特别是在批处理场景下。
通过深入分析annotated-transformer的实现,我们可以更清楚地理解Transformer架构中这些关键组件的设计理念和实现细节,为后续的模型修改和优化奠定坚实基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00