Blockscout项目中的Polygon链智能合约查询性能优化实践
2025-06-17 00:45:45作者:范垣楠Rhoda
背景介绍
在区块链浏览器Blockscout的实际运行中,我们发现了一个典型的数据库查询性能问题。当用户访问Polygon链上的已验证智能合约列表页面时,系统返回500错误状态码,导致功能不可用。经过初步排查,问题定位到一个关键查询语句执行效率极低,需要深入分析并优化。
问题现象
在Polygon主网环境下,查询已验证智能合约列表的请求响应时间超过20分钟,最终导致请求超时。而在其他规模较小的链(如Arbitrum)上,相同查询仅需8秒左右即可完成。这种性能差异表明查询效率与数据规模存在非线性关系。
技术分析
当前索引设计缺陷
系统当前使用的索引设计存在明显不足:
CREATE INDEX addresses_verified_index ON addresses ((1)) WHERE verified = true;
这种索引设计存在两个主要问题:
- 仅包含一个常量表达式(1),没有实际存储查询所需的列数据
- 虽然包含了WHERE条件过滤,但无法支持后续的JOIN操作和排序需求
数据规模影响
通过对比不同链的数据规模,我们发现:
- 小型链(如Arbitrum):约7000万地址记录,表大小16GB,索引21MB
- 大型链(Polygon):约5.8亿地址记录,表大小67GB,索引38MB
数据量增长约8.3倍,但查询时间却从8秒激增至1285秒(约21分钟),增长了160倍,呈现明显的非线性增长趋势。
执行计划分析
数据库优化器在大型数据集上选择了低效的查询计划:
- 使用Bitmap索引扫描,需要处理5450万行数据的重新检查
- I/O操作量增加了25倍
- 默认的work_mem(4MB)配置无法有效支持大规模数据处理
优化方案
索引重构
我们建议采用以下索引优化策略:
-- 移除原有低效索引
DROP INDEX addresses_verified_index;
-- 创建包含必要列的组合索引
CREATE INDEX addresses_verified_hash_txcount_idx
ON addresses(hash, transactions_count)
WHERE verified = true;
新索引设计特点:
- 包含查询实际使用的列(hash和transactions_count)
- 保持原有的verified条件过滤
- 支持排序和连接操作
内存参数调优
针对大型数据集环境,建议调整PostgreSQL内存参数:
-- 在postgresql.conf中全局设置
work_mem = '32MB' -- 至少按数据规模比例增加8倍
多维度索引策略
如果业务中存在多种排序需求,可考虑创建多个专用索引:
-- 按不同排序字段创建专用索引
CREATE INDEX addresses_verified_hash_idx ON addresses(hash) WHERE verified = true;
CREATE INDEX addresses_verified_txcount_idx ON addresses(transactions_count) WHERE verified = true;
预期收益
实施上述优化后,预计可获得以下改进:
- 查询性能提升100-150倍
- 服务器负载和I/O压力显著降低
- 不同数据规模下的性能表现更加一致
- 避免位图操作消耗过多系统资源
实施建议
对于运行区块链浏览器的运维团队,我们建议:
- 在维护窗口期执行索引变更操作
- 先在小规模测试环境验证优化效果
- 监控变更后的系统资源使用情况
- 根据实际查询模式调整索引策略
通过这次优化实践,我们不仅解决了Polygon链上的具体性能问题,也为处理大规模区块链数据查询提供了可复用的优化模式。这种思路同样适用于其他需要高效查询海量地址数据的区块链应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194