使用Dash和Plotly构建企业组织结构树形图
2025-05-09 03:40:15作者:幸俭卉
在企业数据可视化场景中,组织结构图是一种常见需求。本文将介绍如何利用Python的Dash框架和Plotly图形库,将传统的表格数据转换为直观的树形图展示。
数据结构准备
首先需要准备组织结构的层级数据,典型的数据格式如下:
rowData = [
    {"orgHierarchy": ["Erica Rogers"], "jobTitle": "CEO", "employmentType": "Permanent"},
    {"orgHierarchy": ["Erica Rogers", "Malcolm Barrett"], ...},
    ...
]
其中orgHierarchy数组表示从顶层到底层的汇报路径,其他字段如职位名称和雇佣类型作为附加信息。
数据转换处理
为了适配Plotly的树形图组件,需要进行数据转换:
- 提取节点标签:收集所有层级的名称作为节点标签
 - 建立父子关系:确定每个节点的父节点(顶层节点的父节点为空)
 - 附加属性映射:将职位和雇佣类型信息关联到对应节点
 
labels = []
parents = []
job_titles = []
employment_types = []
for row in rowData:
    hierarchy = row["orgHierarchy"]
    for i in range(len(hierarchy)):
        if hierarchy[i] not in labels:
            labels.append(hierarchy[i])
            parents.append("" if i == 0 else hierarchy[i-1])
            job_titles.append(row["jobTitle"] if i == len(hierarchy)-1 else "")
            employment_types.append(row["employmentType"] if i == len(hierarchy)-1 else "")
构建树形图
使用Plotly的go.Treemap组件创建可视化:
fig = go.Figure(go.Treemap(
    labels=labels,
    parents=parents,
    text=job_titles,
    customdata=employment_types,
    hoverinfo='label+text+value+percent entry',
    textinfo="label+text",
    marker=dict(colorscale='Blues')
))
关键参数说明:
labels:节点显示名称parents:定义节点层级关系text:节点上显示的附加文本customdata:用于存储额外信息hoverinfo:定义悬停时显示的内容
界面布局优化
通过Dash框架组织页面布局,并添加适当的样式调整:
fig.update_layout(
    title="企业组织架构图",
    margin=dict(t=50, l=25, r=25, b=25)
)
app.layout = html.Div([
    dcc.Graph(figure=fig)
])
技术优势分析
相比传统的表格展示,树形图具有以下优势:
- 直观性:一目了然地展示组织层级关系
 - 空间效率:在有限空间内展示复杂结构
 - 交互性:支持悬停查看详细信息
 - 可扩展性:容易添加颜色编码等视觉提示
 
进阶应用建议
- 动态加载:对于大型组织,可以实现懒加载子部门
 - 多维度展示:使用颜色区分不同部门或雇佣类型
 - 交互功能:添加点击节点展开/折叠的功能
 - 导出功能:支持图片或PDF导出
 
这种可视化方式特别适合HR系统、企业管理系统等需要清晰展示组织架构的场景。通过Python生态的强大工具链,开发者可以快速构建出专业级的数据可视化应用。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446