Intel Extension for Transformers中trust_remote_code参数问题解析
2025-07-03 01:45:55作者:咎竹峻Karen
Intel Extension for Transformers是一个针对英特尔硬件优化的Transformer模型加速库。近期在实现英特尔GPU支持时,开发者遇到了一个关于trust_remote_code参数的特殊问题。
问题背景
在使用Qwen/Qwen-7B这类包含自定义代码的模型时,Hugging Face Transformers通常会要求用户显式设置trust_remote_code=True参数,以允许执行远程仓库中的自定义代码。然而,在Intel Extension for Transformers的早期版本中,这个参数似乎被忽略了,导致模型加载时仍然会弹出警告提示。
技术细节分析
这个问题源于库中对from_pretrained方法的封装处理。在原始实现中,trust_remote_code参数没有正确传递给底层的Transformers加载机制。这会导致两个主要影响:
- 用户需要手动确认执行远程代码,即使已经设置了参数
- 对于依赖自定义代码的模型,可能导致加载失败或功能异常
解决方案
英特尔团队迅速响应并修复了这个问题。修复后的代码实现确保trust_remote_code参数能够正确传递。以下是优化后的使用示例:
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer
import torch
device = "xpu"
model_name = "Qwen/Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = "Once upon a time, there existed a little girl,"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
qmodel = AutoModelForCausalLM.from_pretrained(model_name,
load_in_4bit=True,
device_map="xpu",
trust_remote_code=True)
qmodel = ipex.optimize_transformers(qmodel,
inplace=True,
dtype=torch.float16,
quantization_config={},
device="xpu")
output = qmodel.generate(inputs)
最佳实践建议
- 对于包含自定义代码的模型,始终明确设置trust_remote_code=True
- 确保使用最新版本的Intel Extension for Transformers
- 在模型加载后进行ipex优化以获得最佳性能
- 注意设备映射设置与实际的硬件配置匹配
性能优化提示
通过ipex.optimize_transformers对模型进行优化可以显著提升推理性能。建议根据实际硬件能力选择合适的dtype和量化配置。对于英特尔GPU设备,使用xpu作为设备标识可以获得最佳的硬件加速效果。
这个问题的高效解决体现了Intel Extension for Transformers项目对开发者反馈的快速响应能力,也展示了该项目持续优化用户体验的承诺。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
719
173
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1