Intel Extension for Transformers中trust_remote_code参数问题解析
2025-07-03 01:45:55作者:咎竹峻Karen
Intel Extension for Transformers是一个针对英特尔硬件优化的Transformer模型加速库。近期在实现英特尔GPU支持时,开发者遇到了一个关于trust_remote_code参数的特殊问题。
问题背景
在使用Qwen/Qwen-7B这类包含自定义代码的模型时,Hugging Face Transformers通常会要求用户显式设置trust_remote_code=True参数,以允许执行远程仓库中的自定义代码。然而,在Intel Extension for Transformers的早期版本中,这个参数似乎被忽略了,导致模型加载时仍然会弹出警告提示。
技术细节分析
这个问题源于库中对from_pretrained方法的封装处理。在原始实现中,trust_remote_code参数没有正确传递给底层的Transformers加载机制。这会导致两个主要影响:
- 用户需要手动确认执行远程代码,即使已经设置了参数
- 对于依赖自定义代码的模型,可能导致加载失败或功能异常
解决方案
英特尔团队迅速响应并修复了这个问题。修复后的代码实现确保trust_remote_code参数能够正确传递。以下是优化后的使用示例:
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer
import torch
device = "xpu"
model_name = "Qwen/Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = "Once upon a time, there existed a little girl,"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
qmodel = AutoModelForCausalLM.from_pretrained(model_name,
load_in_4bit=True,
device_map="xpu",
trust_remote_code=True)
qmodel = ipex.optimize_transformers(qmodel,
inplace=True,
dtype=torch.float16,
quantization_config={},
device="xpu")
output = qmodel.generate(inputs)
最佳实践建议
- 对于包含自定义代码的模型,始终明确设置trust_remote_code=True
- 确保使用最新版本的Intel Extension for Transformers
- 在模型加载后进行ipex优化以获得最佳性能
- 注意设备映射设置与实际的硬件配置匹配
性能优化提示
通过ipex.optimize_transformers对模型进行优化可以显著提升推理性能。建议根据实际硬件能力选择合适的dtype和量化配置。对于英特尔GPU设备,使用xpu作为设备标识可以获得最佳的硬件加速效果。
这个问题的高效解决体现了Intel Extension for Transformers项目对开发者反馈的快速响应能力,也展示了该项目持续优化用户体验的承诺。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355