首页
/ Intel Extension for Transformers中trust_remote_code参数问题解析

Intel Extension for Transformers中trust_remote_code参数问题解析

2025-07-03 23:54:27作者:咎竹峻Karen

Intel Extension for Transformers是一个针对英特尔硬件优化的Transformer模型加速库。近期在实现英特尔GPU支持时,开发者遇到了一个关于trust_remote_code参数的特殊问题。

问题背景

在使用Qwen/Qwen-7B这类包含自定义代码的模型时,Hugging Face Transformers通常会要求用户显式设置trust_remote_code=True参数,以允许执行远程仓库中的自定义代码。然而,在Intel Extension for Transformers的早期版本中,这个参数似乎被忽略了,导致模型加载时仍然会弹出警告提示。

技术细节分析

这个问题源于库中对from_pretrained方法的封装处理。在原始实现中,trust_remote_code参数没有正确传递给底层的Transformers加载机制。这会导致两个主要影响:

  1. 用户需要手动确认执行远程代码,即使已经设置了参数
  2. 对于依赖自定义代码的模型,可能导致加载失败或功能异常

解决方案

英特尔团队迅速响应并修复了这个问题。修复后的代码实现确保trust_remote_code参数能够正确传递。以下是优化后的使用示例:

import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
from transformers import AutoTokenizer
import torch

device = "xpu"
model_name = "Qwen/Qwen-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
prompt = "Once upon a time, there existed a little girl,"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device)

qmodel = AutoModelForCausalLM.from_pretrained(model_name, 
                                            load_in_4bit=True, 
                                            device_map="xpu", 
                                            trust_remote_code=True)

qmodel = ipex.optimize_transformers(qmodel, 
                                  inplace=True, 
                                  dtype=torch.float16, 
                                  quantization_config={}, 
                                  device="xpu")

output = qmodel.generate(inputs)

最佳实践建议

  1. 对于包含自定义代码的模型,始终明确设置trust_remote_code=True
  2. 确保使用最新版本的Intel Extension for Transformers
  3. 在模型加载后进行ipex优化以获得最佳性能
  4. 注意设备映射设置与实际的硬件配置匹配

性能优化提示

通过ipex.optimize_transformers对模型进行优化可以显著提升推理性能。建议根据实际硬件能力选择合适的dtype和量化配置。对于英特尔GPU设备,使用xpu作为设备标识可以获得最佳的硬件加速效果。

这个问题的高效解决体现了Intel Extension for Transformers项目对开发者反馈的快速响应能力,也展示了该项目持续优化用户体验的承诺。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
22
5