Scanpy中score_genes函数的使用注意事项
2025-07-04 21:57:55作者:咎岭娴Homer
背景介绍
Scanpy是一个广泛使用的单细胞RNA测序数据分析工具包,其中的sc.tl.score_genes函数用于计算基因集得分,是分析细胞类型或功能状态的重要工具。然而,许多用户在使用过程中遇到了"ValueError: No valid genes were passed for scoring"的错误提示。
问题现象
用户在使用sc.tl.score_genes函数时,即使确认基因列表中的基因确实存在于adata.var_names中,仍然会遇到以下错误:
- 警告信息显示"genes are not in var_names and ignored"
- 随后抛出ValueError异常,提示没有有效的基因可用于评分
问题原因分析
经过对源代码的分析和用户反馈的验证,发现这个问题通常由以下两种情况引起:
-
未正确处理.raw属性:当adata对象设置了.raw属性但未明确指定use_raw参数时,函数会默认尝试从.raw中查找基因,导致看似存在的基因实际上在.raw中不存在。
-
参数传递方式不当:当以字典形式传递基因列表时,函数可能无法正确解析字典结构,误将字典键名当作基因名处理。
解决方案
针对上述问题,有以下几种解决方法:
- 明确指定use_raw参数:
sc.tl.score_genes(adata, gene_list=markers, use_raw=False)
- 确保基因列表格式正确:
# 正确方式 - 直接传递基因列表
markers = ['Isl1', 'Tcf21', 'Tlx1']
sc.tl.score_genes(adata, gene_list=markers)
# 错误方式 - 传递字典结构
markers_dict = {'cell_type': ['Isl1', 'Tcf21', 'Tlx1']}
# 这会引发问题
- 预处理基因列表:
# 确保所有基因都存在
valid_genes = [gene for gene in markers if gene in adata.var_names]
if len(valid_genes) < 2:
raise ValueError("有效基因数量不足")
最佳实践建议
- 在使用
score_genes前,始终检查基因是否存在:
print([gene for gene in markers if gene in adata.var_names])
- 对于大型分析项目,建议封装一个安全评分的函数:
def safe_score_genes(adata, gene_list, score_name, **kwargs):
valid_genes = [g for g in gene_list if g in adata.var_names]
if len(valid_genes) < 2:
print(f"警告: {score_name}只有{len(valid_genes)}个有效基因")
return
return sc.tl.score_genes(adata, gene_list=valid_genes,
score_name=score_name, **kwargs)
- 考虑使用Scanpy的替代函数
sc.tl.score_genes_cell_cycle或sc.tl.score_genes_gmt,它们提供了更专业的评分方法。
技术细节
score_genes函数的工作原理是:
- 将表达矩阵分成若干bin
- 为每个目标基因选择表达量相似的对照基因
- 计算目标基因与对照基因的表达差异
当出现"no valid genes"错误时,说明在第一步就无法找到足够的目标基因,通常是因为基因名匹配失败或基因数量不足。
总结
正确处理score_genes函数的关键在于:
- 明确基因来源(raw与否)
- 确保基因名完全匹配
- 提供足够数量的有效基因
- 使用正确的数据结构传递参数
通过遵循这些准则,可以避免常见的评分错误,确保单细胞数据分析流程的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661