oneDNN在AArch64架构下测试失败问题分析与解决方案
2025-06-18 13:08:50作者:滑思眉Philip
问题背景
在AArch64架构(ARM平台)上构建oneDNN 3.4版本时,虽然构建过程顺利完成,但在运行测试套件时出现了失败情况。具体表现为在运行test_large_partition_execute.Int8Resnet50Stage2Block
测试用例时,数值比较验证失败。
问题现象
测试失败的具体表现为:
index = 3, a = 14, b = 12, diff = 2, atol = 1, rtol = 0.01. Failed.
Value of: allclose<uint8_t>(outputs_ts[0], ref_outputs_ts[0], 0.01f, 1.f)
Actual: false
Expected: true
测试用例比较了计算输出与参考输出之间的差异,允许的相对误差为1%,绝对误差为1。然而在实际测试中,某些位置出现了差异为2的情况,超出了设定的容错范围。
技术分析
-
数据类型限制变更:
- oneDNN 3.3.3版本使用的是通用模板的
allclose
函数 - oneDNN 3.4版本明确指定了
uint8_t
数据类型限制 - 这一变更是为了支持新的
test_tensor
功能,使验证过程能更好地适应不同计算引擎
- oneDNN 3.3.3版本使用的是通用模板的
-
平台差异影响:
- AArch64架构使用SVE指令集(256位)进行计算
- 不同平台可能采用不同的指令或算法实现,导致计算结果存在微小差异
- 这种差异在大型计算问题中可能会被放大
-
测试策略考量:
- oneDNN主要依赖benchdnn进行跨平台的稳定性验证
- 当前测试用例作为冒烟测试,使用固定输入数据进行验证
- 现有的验证标准在Intel平台上表现良好,但在ARM平台上可能过于严格
解决方案
-
临时解决方案:
- 可以跳过该测试用例继续其他测试
- 在CI环境中,该项目已经将该测试标记为跳过
-
长期解决方案:
- 考虑针对AArch64平台调整验证标准
- 适当放宽容错范围,考虑平台特定的数值特性
- 或者为不同平台设置不同的验证参数
技术建议
对于在ARM平台上使用oneDNN的开发者:
- 如果测试失败不影响实际应用场景,可以考虑忽略该测试失败
- 对于关键应用,建议使用更全面的benchdnn进行验证
- 关注oneDNN后续版本中对该问题的修复情况
- 在实际部署前,建议针对特定工作负载进行充分的验证测试
总结
oneDNN作为高性能深度学习原语库,在不同硬件架构上的实现可能存在细微差异。AArch64架构上的测试失败反映了跨平台兼容性验证的挑战。开发者应当理解这种差异的根源,并根据实际应用需求选择合适的验证策略。oneDNN团队也在持续改进跨平台支持,未来版本有望提供更完善的ARM平台支持。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
253

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
347
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0