开源项目最佳实践:Boltzmann Machines
2025-05-27 23:09:02作者:柯茵沙
1. 项目介绍
本项目是基于TensorFlow的开源项目,旨在实现通用且灵活的受限玻尔兹曼机(RBM)和深度玻尔兹曼机(DBM)模型。这些模型包含了多种特性,并复现了来自“Deep boltzmann machines”、“Learning with hierarchical-deep models”等论文中的实验。项目支持多种随机层和RBM类型,并提供了一系列可视化工具,使得模型的训练和评估更加直观。
2. 项目快速启动
环境准备
首先,确保已经安装了Python和pip。然后安装所需的依赖库:
pip install -r requirements.txt
克隆项目
使用git克隆项目到本地:
git clone https://github.com/yell/boltzmann-machines.git
cd boltzmann-machines
训练模型
以下是一个简单的RBM模型训练示例:
from boltzmann_machines import RBM
# 初始化RBM模型
rbm = RBM(visible_units=784, hidden_units=1024, learning_rate=0.01, momentum=0.9, Gibbs_steps=1, L2_weight_decay=0.0001)
# 加载数据(这里假设数据已经预处理并加载到X_train中)
# X_train = ...
# 训练模型
rbm.fit(X_train, n_epochs=10)
保存和加载模型
训练完成后,可以保存模型:
rbm.save('rbm_model.pkl')
需要时,可以加载模型:
rbm_loaded = RBM.load('rbm_model.pkl')
3. 应用案例和最佳实践
RBM在MNIST数据集上的分类
以下是使用RBM对MNIST数据集进行分类的示例:
from boltzmann_machines import RBM
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载MNIST数据集
mnist = fetch_openml('mnist_784', version=1)
X, y = mnist["data"], mnist["target"]
# 数据预处理
X = X / 255.0
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化RBM模型
rbm = RBM(visible_units=784, hidden_units=1024, learning_rate=0.01, momentum=0.9, Gibbs_steps=1, L2_weight_decay=0.0001)
# 训练模型
rbm.fit(X_train, n_epochs=10)
# 获取特征
features = rbm.transform(X_test)
# 使用k-NN进行分类
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(features, y_train)
y_pred = knn.predict(features)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
DBM在CIFAR-10数据集上的应用
以下是使用DBM对CIFAR-10数据集进行特征学习的示例:
from boltzmann_machines import DBM
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
# 加载CIFAR-10数据集
cifar10 = fetch_openml('cifar-10-batches-py', version=1)
X, y = cifar10["data"], cifar10["target"]
# 数据预处理
X = X / 255.0
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化DBM模型
dbm = DBM(visible_units=784, hidden_units=[512, 1024], learning_rate=0.01, momentum=0.9, Gibbs_steps=1, L2_weight_decay=0.0001)
# 训练模型
dbm.fit(X_train, n_epochs=10)
# 获取特征
features = dbm.transform(X_test)
# 此处可以添加分类器进行特征分类
4. 典型生态项目
本项目是一个典型的机器学习模型实现,可以与其他开源项目如scikit-learn、TensorFlow等集成,形成一个完整的机器学习工作流程。例如,可以将RBM或DBM与深度学习框架结合,进行特征提取和分类任务,或者与其他数据预处理和后处理工具集成,以构建端到端的机器学习解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868