YOLOv8 Tracking项目新增ONNX Runtime Silicon GPU支持的技术解析
在计算机视觉领域,YOLOv8作为当前最先进的实时目标检测算法之一,其跟踪版本YOLOv8 Tracking因其出色的性能和易用性而广受欢迎。近期,该项目迎来了一个重要更新——增加了对ONNX Runtime Silicon GPU的支持,这一改进将显著提升在苹果M系列芯片设备上的推理性能。
技术背景
ONNX Runtime是一个用于运行ONNX模型的高性能推理引擎。传统的ONNX Runtime主要针对通用CPU和NVIDIA GPU进行优化,而随着苹果自研芯片的普及,专门针对M系列芯片优化的ONNX Runtime Silicon版本应运而生。这个版本通过COREMLExecutionProvider执行提供程序,能够充分利用苹果芯片的神经网络引擎和GPU加速能力。
更新内容分析
本次YOLOv8 Tracking的更新主要包含以下技术要点:
-
新增依赖包支持:项目现在集成了onnxruntime-silicon包,这是专门为苹果M系列芯片优化的ONNX Runtime版本。
-
执行提供程序集成:新增了COREMLExecutionProvider支持,这是苹果芯片专用的执行提供程序,能够更好地利用硬件加速能力。
-
性能优化:通过上述改进,在M1/M2系列芯片设备上运行YOLOv8跟踪模型时,可以获得更低的延迟和更高的吞吐量。
技术实现细节
在实现层面,这一更新主要涉及以下技术调整:
-
后端集成:在ONNXBackend中增加了对苹果芯片的原生支持,使得推理引擎能够自动识别并利用M系列芯片的硬件加速能力。
-
执行提供程序管理:系统现在能够智能地选择最优的执行提供程序,在苹果设备上优先使用COREMLExecutionProvider,在其他平台上回退到默认提供程序。
-
性能调优:针对苹果芯片的特定架构进行了参数优化,确保神经网络运算能够充分利用苹果芯片的AMX矩阵协处理器和GPU资源。
实际应用价值
这一更新对于实际应用场景具有重要价值:
-
移动端部署:使得在MacBook和iPad等苹果设备上部署YOLOv8跟踪模型成为可能,且能保持高性能。
-
能效比提升:相比传统x86 CPU实现,在M系列芯片上运行可以获得更好的能效比,延长移动设备的电池续航。
-
开发便利性:开发者现在可以更方便地在苹果开发环境中测试和优化跟踪算法,无需额外的硬件设备。
未来展望
随着苹果自研芯片的持续演进,这一集成将为YOLOv8 Tracking带来更多可能性:
-
持续性能优化:随着苹果芯片架构的更新,可以预期进一步的性能提升。
-
端侧AI应用:为开发基于苹果设备的实时计算机视觉应用提供了更好的基础。
-
生态扩展:可能带动更多计算机视觉模型对苹果芯片的原生支持。
这一更新体现了YOLOv8 Tracking项目对硬件生态多样性的重视,也展示了开源社区对最新技术趋势的快速响应能力。对于使用苹果设备进行计算机视觉开发的用户来说,这无疑是一个值得关注的重要改进。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00