Kubernetes Descheduler插件配置常见问题解析与优化实践
2025-06-11 07:15:07作者:裴麒琰
问题背景
在使用Kubernetes Descheduler进行集群负载均衡时,用户经常会遇到插件配置错误导致功能失效的情况。本文将以一个典型配置错误为例,深入分析问题原因并提供优化建议。
典型配置错误分析
在Descheduler的配置文件中,用户可能会遇到如下错误提示:
unable to create a profile err="profile \"test\" configures deschedule extension point of non-existing plugins: map[RemovePodsViolatingTopologySpreadConstraint:{}]"
这个错误的核心原因是插件被错误地分配到了不支持的扩展点。具体来说:
RemovePodsViolatingTopologySpreadConstraint插件仅支持Balance扩展点,却被同时配置在了Deschedule扩展点下- 类似的,
RemovePodsViolatingNodeTaints插件也存在同样的问题
正确配置方案
经过修正后的配置应该如下所示:
plugins:
balance:
enabled:
- RemoveDuplicates
- RemovePodsViolatingTopologySpreadConstraint
- LowNodeUtilization
deschedule:
enabled:
- RemovePodsHavingTooManyRestarts
- RemovePodsViolatingNodeTaints
- RemovePodsViolatingInterPodAntiAffinity
负载均衡不生效的深度解析
即使配置正确后,用户可能仍然会遇到负载均衡效果不明显的情况。这通常与LowNodeUtilization插件的阈值设置有关。从日志中可以看到关键提示:
"No node is underutilized, nothing to do here, you might tune your thresholds further"
这里需要理解几个关键概念:
-
阈值类型:
thresholds:定义节点被视为"低利用率"的标准targetThresholds:定义节点被视为"高利用率"的标准
-
资源计算方式:
- CPU和内存使用率是基于节点资源预留量计算,而非实际使用量
- Pod数量是基于当前运行Pod数与节点最大Pod容量的百分比
优化建议
-
合理设置阈值:
- 建议从保守值开始,逐步调整
- 示例配置:
thresholds: cpu: 20 memory: 30 pods: 20 targetThresholds: cpu: 50 memory: 70 pods: 60
-
监控与迭代:
- 部署后观察节点资源分布情况
- 结合集群监控数据调整阈值
- 建议每次调整后至少观察一个完整的调度周期
-
多维度考量:
- 考虑不同工作负载的特性
- 对于有状态应用需要特殊处理
- 结合Pod优先级和QoS类进行综合评估
总结
正确配置和使用Kubernetes Descheduler需要深入理解各插件的工作机制和相互关系。通过本文的分析,我们了解到:
- 插件必须配置在正确的扩展点下才能生效
- 负载均衡效果与阈值设置密切相关
- 资源利用率的计算方式与实际观察值可能存在差异
建议用户在部署前充分测试不同配置方案,并结合具体业务场景进行优化,才能实现最佳的集群负载均衡效果。
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758