Slang项目中的VK_KHR_cooperative_matrix扩展支持分析
在图形编程和计算领域,矩阵运算一直是性能优化的关键点。Shader-Slang项目最近讨论了关于VK_KHR_cooperative_matrix扩展(简称coopmat1)的支持问题,这一扩展专门用于加速机器学习工作负载中的矩阵运算。
VK_KHR_cooperative_matrix是Vulkan API的一个扩展,它允许着色器程序中的多个线程协作处理矩阵运算。与传统的矩阵运算方式相比,这种协作式矩阵运算能够显著提高特定工作负载的执行效率。该扩展有两个相关规范:SPIRV_KHR_cooperative_matrix和GLSL_KHR_cooperative_matrix,分别定义了SPIR-V中间语言和GLSL着色语言中的支持。
值得注意的是,这一扩展目前没有直接的DirectX、Metal或WGSL等效功能,这使得它在跨平台开发中具有独特价值。在Shader-Slang项目中实现这一支持,将为开发者提供更强大的矩阵运算能力,特别是在机器学习推理等高性能计算场景中。
从技术实现角度来看,coopmat1扩展与项目中已经实现的协作向量(cooperative vectors)功能有相似之处。这种相似性意味着实现过程中可以借鉴现有代码结构和设计模式,从而降低开发难度并保持代码一致性。
项目维护者表示目前尚未开始这项工作,并欢迎社区贡献。一位贡献者已主动请缨承担这一任务,这表明开源社区对高性能计算功能的持续关注和积极参与。
实现这一扩展将为Shader-Slang项目带来更全面的Vulkan支持,特别是在AI/ML工作负载加速方面。对于需要进行大规模矩阵运算的应用,如深度学习推理、计算机视觉处理等场景,这一功能将提供显著的性能优势。
随着机器学习在图形和计算领域的应用日益广泛,支持coopmat1这样的专业扩展将成为现代着色器编译器和中间语言工具链的重要特性。Shader-Slang项目的这一进展值得图形编程和机器学习开发者关注。
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型014kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
最新内容推荐
项目优选









