终极算子学习指南:如何用DeepONet & FNO轻松求解偏微分方程
2026-02-05 05:28:01作者:尤峻淳Whitney
DeepONet & FNO是一个基于神经网络的算子学习框架,专为高效求解复杂偏微分方程(PDE)问题设计。该项目整合了DeepONet和FNO(Fourier Neural Operator)两种强大架构,提供开箱即用的实现代码与丰富应用案例,帮助研究人员和开发者快速构建高精度PDE求解模型。
🚀 3分钟快速启动
1️⃣ 环境准备
确保系统已安装以下依赖(建议Python 3.7+环境):
- PyTorch 1.7+
- NumPy
- Matplotlib
通过项目根目录的requirements.txt一键安装:
pip install -r requirements.txt
2️⃣ 获取项目代码
git clone https://gitcode.com/gh_mirrors/de/deeponet-fno
cd deeponet-fno
3️⃣ 运行示例代码
以Burgers方程求解为例,进入对应目录执行训练:
cd src/burgers
python deeponet.py
💡 核心功能与应用场景
🔹 DeepONet架构
基于函数映射的神经网络算子,擅长处理输入为函数空间的PDE问题。源码实现位于各应用场景目录下的deeponet.py(如src/burgers/deeponet.py)。
🔹 FNO架构
结合傅里叶变换的高效算子学习模型,在高维问题中表现优异。2D实现示例可见src/darcy_rectangular_pwc/fourier_2d.py。
🔹 典型应用案例
1. Burgers方程求解
- 非线性波动问题的经典测试案例
- 实现路径:
src/burgers/
2. Darcy流动模拟
- 多孔介质中的流体流动问题
- 矩形域实现:
src/darcy_rectangular_pwc/ - 三角形缺口域实现:
src/darcy_triangular_notch/
3. 对流方程求解
- 含时间依赖的传输问题
- 源码路径:
src/advection_II_III/
📊 模型选择指南
| 问题类型 | 推荐架构 | 优势 |
|---|---|---|
| 1D PDEs | DeepONet | 训练速度快,数据效率高 |
| 2D/3D PDEs | FNO | 网格不变性,长距离依赖建模 |
| 高维输入 | POD-DeepONet | 降维加速,见deeponet_POD.py |
🔧 实用开发工具
数据处理模块
各场景目录下的utilities3.py提供标准化数据加载与预处理功能。
可视化工具
- Matplotlib实现:多数目录下含结果绘图脚本
- MATLAB脚本:如
src/darcy_triangular_notch/deeponet/plot.m
📚 学习资源
- 项目文档:各模块目录下的
README.md - 核心算法实现:
- DeepONet:
src/*/deeponet.py - FNO:
src/*/fourier_*.py
- DeepONet:
通过这套完整的算子学习框架,即使是PDE求解新手也能快速上手复杂的科学计算问题。无论是学术研究还是工程应用,DeepONet & FNO都能提供强大的技术支持。
❓ 常见问题
Q: 如何选择DeepONet和FNO?
A: 1D问题优先用DeepONet,高维问题推荐FNO,数据量较大时可尝试POD降维版本(deeponet_POD.py)。
Q: 支持自定义边界条件吗?
A: 支持,可参考src/darcy_triangular_notch/中的边界条件实现(bcvalues.m、ubc.m)。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355