DeepVariant在Pacbio Mas-seq scRNA-seq数据中的低质量变异问题分析
2025-06-24 08:23:18作者:尤峻淳Whitney
背景介绍
DeepVariant作为谷歌开发的高精度变异检测工具,在多种测序平台上都表现出优异的性能。然而,在Pacbio Mas-seq scRNA-seq数据的实际应用中,用户报告了一个值得关注的现象:经过初步过滤后获得的214241个变异中,仅有355个变异能够通过质量筛选(QUAL≥10或PASS标准),这与预期结果存在显著差异。
问题现象
用户在使用DeepVariant处理伪批量水平的Pacbio Mas-seq scRNA-seq数据时,观察到以下关键现象:
- 原始检测到的变异数量为214241个
- 设置QUAL≥10的过滤条件后,仅保留28个变异
- 使用PASS标准过滤后,保留355个变异
- 相同数据使用Clair3-RNA处理后,仍有150830个变异通过类似过滤条件
这种极低的通过率显然不符合预期,表明DeepVariant的质量评分系统在该数据类型下可能存在问题。
技术分析
经过深入调查,发现问题根源在于输入BAM文件的生成方式。具体技术细节如下:
- BAM文件质量问题:输入的BAM文件中所有碱基的质量分数(Qual)均为0,这在NGS数据分析中较为罕见
- 质量分数的重要性:DeepVariant的质量评估体系高度依赖碱基质量分数,这是其变异检测算法的重要组成部分
- 质量分数缺失的影响:当所有碱基质量分数为0时,DeepVariant的质量评估启发式方法会产生负面效果,导致绝大多数变异被错误地标记为低质量
解决方案与建议
针对这一问题,我们提出以下解决方案和技术建议:
- BAM文件预处理:确保输入BAM文件包含正确的碱基质量分数信息
- 质量分数验证:在运行DeepVariant前,使用samtools等工具检查BAM文件的质量分数分布
- 替代处理方法:对于无法获得原始质量分数的数据,可考虑以下方案:
- 使用默认质量分数进行填充
- 尝试其他专门为低质量数据优化的变异检测工具
- 模型适应性:虽然DeepVariant模型设计上能够处理splitNC和flagCorrection处理与否的数据,但输入数据的质量分数完整性仍是关键因素
经验总结
这一案例揭示了几个重要的生物信息学实践要点:
- 数据质量检查的重要性:在运行任何变异检测流程前,都应进行全面的数据质量评估
- 工具限制的理解:即使是强大的工具如DeepVariant,也有其特定的输入要求和限制条件
- 问题诊断方法:当结果异常时,应从原始数据开始逐步排查,而非直接质疑工具性能
对于Pacbio Mas-seq scRNA-seq数据分析,建议用户在运行DeepVariant前,务必确保输入BAM文件包含有效的质量分数信息,这是获得可靠变异检测结果的关键前提条件。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Python开发者的macOS终极指南:VSCode安装配置全攻略 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
189
208
暂无简介
Dart
630
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.65 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
269
仓颉编译器源码及 cjdb 调试工具。
C++
128
858