Intel Neural Compressor 安装与使用指南
2024-08-11 14:37:30作者:尤辰城Agatha
1. 项目的目录结构及介绍
Intel Neural Compressor 是一个开源的Python库,用于主流深度学习框架(如 TensorFlow、PyTorch 和 ONNX Runtime)上的模型压缩技术。下面简要介绍了该项目的主要目录结构:
azure-pipelines
: Azure Pipelines 配置文件,用于持续集成和部署。docker
: Dockerfile 及相关配置,用于构建容器镜像。docs
: 文档目录,包括用户手册、API参考等。examples
: 示例代码目录,包含了如何使用Neural Compressor进行量化、剪枝和其他压缩技术的例子。neural_compressor
: 主要源码目录,包含了Neural Compressor的核心功能实现。tests
: 测试代码目录,用于自动化测试确保软件质量。
2. 启动文件介绍
虽然“启动”一词在深度学习模型压缩中并不常见,但在设置或运行示例时可能需要执行一些主要脚本。例如,在 examples
目录下,可以找到多个示例脚本,这些脚本演示了如何使用Neural Compressor的不同特性来训练和优化模型。通常情况下,这些脚本是通过命令行调用来执行的。
- Typical Usage: 要运行某个示例,你可以进入相应的子目录并执行
python run.py
或类似的主脚本。
3. 配置文件介绍
Intel Neural Compressor 使用 JSON 格式的配置文件,以定义不同的压缩策略、目标精度以及硬件特定的参数。这类文件允许用户灵活地调整压缩过程中的各种选项。配置文件通常被命名为 .yaml
或者 .json
文件,它们可以在示例或者用户的项目中找到。配置文件的内容取决于要使用的压缩类型(如量化、剪枝),但一般会包含以下部分:
framework
: 指定的深度学习框架。model
: 输入模型的路径或名称。device
: 执行任务的目标设备。evaluation
: 评估配置,包括数据集和指标。tuning
: 调优策略,包括是否使用混合精度训练,迭代次数等。quantization
: 量化策略,例如比特数,激活函数的量化方式等。pruning
: 剪枝策略,比如剪枝率,算法选择等。
具体而言,这些配置文件通过以下示例所示的方式进行定义:
config:
framework: pytorch
model: path/to/model.pt
device: cpu
evaluation:
dataset: imagenet
metric: accuracy
tuning:
approach: post_training_quantization
mixed_precision: true
iterations: 100
quantization:
algorithm: uniform
activation_bits: 8
pruning:
approach: level
rate: 0.2
以上是基于GitHub页面信息整理得到的Intel Neural Compressor安装与使用指南概览。对于深入理解和操作该工具,推荐直接访问 GitHub仓库 并查阅详细的官方文档。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197