FlagEmbedding项目中BGE大模型转换为ONNX格式的技术实践
2025-05-24 02:38:48作者:魏献源Searcher
在自然语言处理领域,将预训练模型转换为ONNX格式是模型部署的重要环节。本文以FlagEmbedding项目中的bge-large-zh-v1.5模型为例,详细介绍如何将微调后的中文嵌入模型转换为ONNX格式,以便于在不同平台上高效部署。
ONNX转换的必要性
ONNX(Open Neural Network Exchange)是一种开放的模型表示格式,它允许模型在不同框架之间进行转换和运行。将BGE模型转换为ONNX格式后,可以获得以下优势:
- 跨平台兼容性:ONNX模型可以在多种推理引擎上运行,包括ONNX Runtime、TensorRT等
- 性能优化:ONNX运行时提供了多种优化选项,可以加速模型推理
- 部署灵活性:支持多种编程语言接口,便于集成到不同应用系统中
转换前的准备工作
在进行模型转换前,需要确保:
- 已完成模型的微调训练,并保存了完整的模型权重
- 安装了必要的Python依赖包,包括transformers、onnxruntime和torch
- 了解模型的输入输出结构,特别是对于嵌入模型,需要明确输入文本的处理方式
转换过程详解
1. 模型加载
首先需要加载微调后的BGE模型。使用Hugging Face的transformers库可以方便地加载本地保存的模型:
from transformers import AutoModel
model = AutoModel.from_pretrained("/path/to/finetuned_model")
2. 准备示例输入
ONNX转换需要提供示例输入,用于确定模型的输入维度。对于文本嵌入模型,通常需要提供tokenized的输入:
dummy_input = {
"input_ids": torch.randint(0, 1000, (1, 128)), # 假设最大长度为128
"attention_mask": torch.ones((1, 128), dtype=torch.long)
}
3. 执行ONNX导出
使用PyTorch的ONNX导出功能将模型转换为ONNX格式:
torch.onnx.export(
model,
(dummy_input["input_ids"], dummy_input["attention_mask"]),
"bge_onnx_model.onnx",
input_names=["input_ids", "attention_mask"],
output_names=["last_hidden_state"],
dynamic_axes={
"input_ids": {0: "batch_size", 1: "sequence_length"},
"attention_mask": {0: "batch_size", 1: "sequence_length"},
"last_hidden_state": {0: "batch_size", 1: "sequence_length"}
},
opset_version=12
)
4. 验证ONNX模型
转换完成后,应该验证ONNX模型的正确性:
import onnxruntime as ort
import numpy as np
# 创建ONNX运行时会话
ort_session = ort.InferenceSession("bge_onnx_model.onnx")
# 准备输入数据
inputs = {
"input_ids": dummy_input["input_ids"].numpy(),
"attention_mask": dummy_input["attention_mask"].numpy()
}
# 运行推理
outputs = ort_session.run(None, inputs)
转换后的优化建议
- 量化优化:考虑使用ONNX的量化工具对模型进行8位或16位量化,减少模型大小并提高推理速度
- 图优化:使用ONNX Runtime提供的图优化功能,如算子融合、常量折叠等
- 动态轴处理:根据实际应用场景,合理设置动态轴参数,平衡灵活性和性能
常见问题解决方案
- 形状不匹配错误:检查示例输入的维度是否与模型预期一致
- 算子不支持:尝试降低ONNX opset版本,或添加自定义算子实现
- 精度损失:验证转换前后模型的输出差异,必要时调整导出参数
实际应用中的注意事项
- 文本预处理流程应与训练时保持一致,包括分词、截断、填充等操作
- 对于中文文本,确保使用与模型匹配的分词器
- 考虑批处理推理以提高吞吐量,但要注意内存限制
通过以上步骤,开发者可以成功将微调后的BGE模型转换为ONNX格式,为后续的部署和应用打下坚实基础。在实际项目中,还需要根据具体场景进行性能测试和调优,以达到最佳的应用效果。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
50
373

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
348
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
32
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0