FlagEmbedding项目中BGE大模型转换为ONNX格式的技术实践
2025-05-24 08:14:06作者:魏献源Searcher
在自然语言处理领域,将预训练模型转换为ONNX格式是模型部署的重要环节。本文以FlagEmbedding项目中的bge-large-zh-v1.5模型为例,详细介绍如何将微调后的中文嵌入模型转换为ONNX格式,以便于在不同平台上高效部署。
ONNX转换的必要性
ONNX(Open Neural Network Exchange)是一种开放的模型表示格式,它允许模型在不同框架之间进行转换和运行。将BGE模型转换为ONNX格式后,可以获得以下优势:
- 跨平台兼容性:ONNX模型可以在多种推理引擎上运行,包括ONNX Runtime、TensorRT等
- 性能优化:ONNX运行时提供了多种优化选项,可以加速模型推理
- 部署灵活性:支持多种编程语言接口,便于集成到不同应用系统中
转换前的准备工作
在进行模型转换前,需要确保:
- 已完成模型的微调训练,并保存了完整的模型权重
- 安装了必要的Python依赖包,包括transformers、onnxruntime和torch
- 了解模型的输入输出结构,特别是对于嵌入模型,需要明确输入文本的处理方式
转换过程详解
1. 模型加载
首先需要加载微调后的BGE模型。使用Hugging Face的transformers库可以方便地加载本地保存的模型:
from transformers import AutoModel
model = AutoModel.from_pretrained("/path/to/finetuned_model")
2. 准备示例输入
ONNX转换需要提供示例输入,用于确定模型的输入维度。对于文本嵌入模型,通常需要提供tokenized的输入:
dummy_input = {
"input_ids": torch.randint(0, 1000, (1, 128)), # 假设最大长度为128
"attention_mask": torch.ones((1, 128), dtype=torch.long)
}
3. 执行ONNX导出
使用PyTorch的ONNX导出功能将模型转换为ONNX格式:
torch.onnx.export(
model,
(dummy_input["input_ids"], dummy_input["attention_mask"]),
"bge_onnx_model.onnx",
input_names=["input_ids", "attention_mask"],
output_names=["last_hidden_state"],
dynamic_axes={
"input_ids": {0: "batch_size", 1: "sequence_length"},
"attention_mask": {0: "batch_size", 1: "sequence_length"},
"last_hidden_state": {0: "batch_size", 1: "sequence_length"}
},
opset_version=12
)
4. 验证ONNX模型
转换完成后,应该验证ONNX模型的正确性:
import onnxruntime as ort
import numpy as np
# 创建ONNX运行时会话
ort_session = ort.InferenceSession("bge_onnx_model.onnx")
# 准备输入数据
inputs = {
"input_ids": dummy_input["input_ids"].numpy(),
"attention_mask": dummy_input["attention_mask"].numpy()
}
# 运行推理
outputs = ort_session.run(None, inputs)
转换后的优化建议
- 量化优化:考虑使用ONNX的量化工具对模型进行8位或16位量化,减少模型大小并提高推理速度
- 图优化:使用ONNX Runtime提供的图优化功能,如算子融合、常量折叠等
- 动态轴处理:根据实际应用场景,合理设置动态轴参数,平衡灵活性和性能
常见问题解决方案
- 形状不匹配错误:检查示例输入的维度是否与模型预期一致
- 算子不支持:尝试降低ONNX opset版本,或添加自定义算子实现
- 精度损失:验证转换前后模型的输出差异,必要时调整导出参数
实际应用中的注意事项
- 文本预处理流程应与训练时保持一致,包括分词、截断、填充等操作
- 对于中文文本,确保使用与模型匹配的分词器
- 考虑批处理推理以提高吞吐量,但要注意内存限制
通过以上步骤,开发者可以成功将微调后的BGE模型转换为ONNX格式,为后续的部署和应用打下坚实基础。在实际项目中,还需要根据具体场景进行性能测试和调优,以达到最佳的应用效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868