FlagEmbedding项目中BGE大模型转换为ONNX格式的技术实践
2025-05-24 03:46:36作者:魏献源Searcher
在自然语言处理领域,将预训练模型转换为ONNX格式是模型部署的重要环节。本文以FlagEmbedding项目中的bge-large-zh-v1.5模型为例,详细介绍如何将微调后的中文嵌入模型转换为ONNX格式,以便于在不同平台上高效部署。
ONNX转换的必要性
ONNX(Open Neural Network Exchange)是一种开放的模型表示格式,它允许模型在不同框架之间进行转换和运行。将BGE模型转换为ONNX格式后,可以获得以下优势:
- 跨平台兼容性:ONNX模型可以在多种推理引擎上运行,包括ONNX Runtime、TensorRT等
- 性能优化:ONNX运行时提供了多种优化选项,可以加速模型推理
- 部署灵活性:支持多种编程语言接口,便于集成到不同应用系统中
转换前的准备工作
在进行模型转换前,需要确保:
- 已完成模型的微调训练,并保存了完整的模型权重
- 安装了必要的Python依赖包,包括transformers、onnxruntime和torch
- 了解模型的输入输出结构,特别是对于嵌入模型,需要明确输入文本的处理方式
转换过程详解
1. 模型加载
首先需要加载微调后的BGE模型。使用Hugging Face的transformers库可以方便地加载本地保存的模型:
from transformers import AutoModel
model = AutoModel.from_pretrained("/path/to/finetuned_model")
2. 准备示例输入
ONNX转换需要提供示例输入,用于确定模型的输入维度。对于文本嵌入模型,通常需要提供tokenized的输入:
dummy_input = {
"input_ids": torch.randint(0, 1000, (1, 128)), # 假设最大长度为128
"attention_mask": torch.ones((1, 128), dtype=torch.long)
}
3. 执行ONNX导出
使用PyTorch的ONNX导出功能将模型转换为ONNX格式:
torch.onnx.export(
model,
(dummy_input["input_ids"], dummy_input["attention_mask"]),
"bge_onnx_model.onnx",
input_names=["input_ids", "attention_mask"],
output_names=["last_hidden_state"],
dynamic_axes={
"input_ids": {0: "batch_size", 1: "sequence_length"},
"attention_mask": {0: "batch_size", 1: "sequence_length"},
"last_hidden_state": {0: "batch_size", 1: "sequence_length"}
},
opset_version=12
)
4. 验证ONNX模型
转换完成后,应该验证ONNX模型的正确性:
import onnxruntime as ort
import numpy as np
# 创建ONNX运行时会话
ort_session = ort.InferenceSession("bge_onnx_model.onnx")
# 准备输入数据
inputs = {
"input_ids": dummy_input["input_ids"].numpy(),
"attention_mask": dummy_input["attention_mask"].numpy()
}
# 运行推理
outputs = ort_session.run(None, inputs)
转换后的优化建议
- 量化优化:考虑使用ONNX的量化工具对模型进行8位或16位量化,减少模型大小并提高推理速度
- 图优化:使用ONNX Runtime提供的图优化功能,如算子融合、常量折叠等
- 动态轴处理:根据实际应用场景,合理设置动态轴参数,平衡灵活性和性能
常见问题解决方案
- 形状不匹配错误:检查示例输入的维度是否与模型预期一致
- 算子不支持:尝试降低ONNX opset版本,或添加自定义算子实现
- 精度损失:验证转换前后模型的输出差异,必要时调整导出参数
实际应用中的注意事项
- 文本预处理流程应与训练时保持一致,包括分词、截断、填充等操作
- 对于中文文本,确保使用与模型匹配的分词器
- 考虑批处理推理以提高吞吐量,但要注意内存限制
通过以上步骤,开发者可以成功将微调后的BGE模型转换为ONNX格式,为后续的部署和应用打下坚实基础。在实际项目中,还需要根据具体场景进行性能测试和调优,以达到最佳的应用效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137