Audit.NET 实战:如何优化API请求日志记录与异常处理
2025-07-01 03:39:28作者:宣聪麟
引言
在现代Web应用开发中,完善的日志记录系统对于问题排查和系统监控至关重要。Audit.NET作为一个强大的审计日志框架,为.NET开发者提供了灵活的日志记录能力。本文将深入探讨如何优化API请求的日志记录策略,特别是针对不同HTTP方法和响应状态码的特殊处理。
核心问题分析
在实现API请求日志记录时,我们通常会遇到几个典型问题:
- 对于GET和HEAD等只读请求,是否需要记录完整的请求和响应体
- 对于204 No Content响应,如何处理响应体记录
- 如何避免因日志数据过大导致的存储异常
解决方案实现
1. 选择性日志记录策略
通过Audit.NET的配置,我们可以精确控制哪些请求需要被记录:
app.UseAuditMiddleware(cfg =>
{
// 排除GET和HEAD方法的请求
cfg.FilterByRequest(rq => rq.Method != HttpMethods.Get && rq.Method != HttpMethods.Head)
.WithEventType("{verb}.{controller}.{action}")
.IncludeRequestBody()
// 排除204状态码的响应体
.IncludeResponseBody(c => c.Response.StatusCode != (int)HttpStatusCode.NoContent);
});
2. 使用全局过滤器替代中间件
更优雅的解决方案是使用AuditApiGlobalFilter,它提供了更精细的控制:
options.Filters.Add(new AuditApiGlobalFilter(f => f
.LogRequestIf(rq => rq.Method != HttpMethods.Get && rq.Method != HttpMethods.Head)
.WithEventType("{verb}.{controller}.{action}")
.IncludeRequestBody()
.IncludeResponseBody(p => p.HttpContext.Response.StatusCode != (int)HttpStatusCode.NoContent)
));
这种方法避免了不必要的中间件处理,直接在动作过滤器层面实现日志控制。
3. 大数据量处理策略
对于可能产生大体积请求/响应体的场景,我们需要实现智能截断:
Configuration.AddCustomAction(ActionType.OnEventSaving, scope =>
{
var action = scope.GetWebApiAuditAction();
// 处理超大请求体
if (action?.RequestBody?.Value != null && action.RequestBody.Length > 32000)
{
action.RequestBody.Value = action.RequestBody.Value is string stringValue
? (ExtractFileNameFromContent(stringValue) == "unknown"
? "Request content too long..."
: $"File: {fileName}")
: "Request content too long...";
}
// 处理超大响应体
if (action?.ResponseBody?.Value != null && action.ResponseBody.Length > 16384)
{
action.ResponseBody.Value = "too long...";
}
// 其他可能的大数据字段处理
action.Exception = action.Exception?[0..1000];
// 处理表单变量
foreach (var k in action.FormVariables.Keys)
{
if (action.FormVariables[k].Length > 1000)
{
action.FormVariables[k] = action.FormVariables[k][0..1000];
}
}
// 处理请求头
foreach (var k in action.Headers.Keys)
{
if (action.Headers[k].Length > 1000)
{
action.Headers[k] = action.Headers[k][0..1000];
}
}
});
最佳实践建议
- 性能考量:对于高频API,建议完全排除GET/HEAD方法的日志记录,减少I/O压力
- 存储优化:实现智能截断策略前,应先分析典型请求大小分布,设置合理的阈值
- 异常处理:确保日志系统本身不会因记录日志而引发新的异常
- 上下文保留:即使截断大内容,也应保留足够的问题诊断信息
- 安全考虑:敏感信息应在记录前进行脱敏处理
总结
通过合理配置Audit.NET,我们可以构建一个既全面又高效的API请求日志系统。关键在于理解不同HTTP方法和状态码的特点,并针对性地实施记录策略。大数据量的智能处理和安全考量也是不可忽视的重要环节。本文提供的解决方案在实际项目中经过验证,能够有效平衡日志完整性和系统性能的需求。
对于更复杂的场景,开发者可以进一步扩展自定义动作,实现更精细的日志控制策略,如基于用户角色、API端点等维度的差异化记录配置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1