JeecgBoot数据权限机制深度解析与优化实践
2025-05-02 19:35:22作者:董灵辛Dennis
数据权限机制概述
JeecgBoot作为一款优秀的企业级开发框架,其数据权限机制是系统安全性的重要保障。数据权限的核心作用是控制不同用户能够访问的数据范围,确保每个用户只能看到自己权限范围内的数据。在业务系统中,这通常表现为部门隔离、数据隔离等场景。
原数据权限实现分析
框架原有的数据权限实现采用了一种较为简单的逻辑处理方式:
- 多角色处理:当用户拥有多个角色时,系统会将这些角色的数据权限条件用AND逻辑连接
- 条件拼接:所有数据权限条件与用户查询条件同样采用AND连接
这种实现方式存在一个明显的缺陷:当用户拥有多个角色时,最终的数据权限范围实际上是各个角色权限的交集,这会导致用户只能看到权限最小的角色所允许的数据,而非理论上应该看到的各角色权限的并集。
问题场景还原
假设一个用户同时拥有以下两个角色:
- 角色A:可以查看部门ID为100的数据
- 角色B:可以查看创建人为当前用户的数据
按照原有实现,查询条件会变成:
(部门ID = 100) AND (创建人 = 当前用户)
而实际上更合理的逻辑应该是:
(部门ID = 100) OR (创建人 = 当前用户)
优化方案设计
针对上述问题,我们设计了以下优化方案:
- 分层处理:将数据权限条件与用户查询条件分离处理
- 逻辑分组:
- 同一角色的多个数据权限条件保持AND连接
- 不同角色的数据权限组之间采用OR连接
- 条件封装:将整个数据权限条件组用括号包裹,确保逻辑清晰
优化后的SQL条件结构示例:
(用户查询条件1 AND 用户查询条件2)
AND
(
(角色1条件1 AND 角色1条件2)
OR
(角色2条件1 AND 角色2条件2)
)
技术实现细节
在installMplus方法中,我们进行了以下关键修改:
- 角色遍历处理:获取用户所有角色,逐个处理每个角色的数据权限
- 条件构建:
- 为每个角色构建独立的AND条件组
- 使用StringBuilder高效拼接SQL片段
- 最终整合:将所有角色的条件组用OR连接,并整体用括号包裹
- 安全处理:确保生成的SQL语句不存在注入风险
核心代码逻辑:
// 遍历用户所有角色
for (String roleId : roleIds) {
// 获取角色数据权限规则
List<SysPermissionDataRuleModel> list = commonAPI.queryDataRule(ruleIdList);
// 构建当前角色的AND条件组
StringBuilder roleCondition = new StringBuilder();
for (SysPermissionDataRuleModel dataRule : list) {
// 拼接各个规则条件
if (roleCondition.length() > 0) {
roleCondition.append(" AND ");
}
// 规则条件处理逻辑...
}
// 将角色条件组加入总条件
if (roleCondition.length() > 0) {
if (roleConditions.length() > 0) {
roleConditions.append(" OR ");
}
roleConditions.append("(").append(roleCondition).append(")");
}
}
// 最终将数据权限条件加入查询
if (roleConditions.length() > 0) {
queryWrapper.and(i -> i.apply(roleConditions.toString()));
}
优化效果验证
优化后的数据权限机制具有以下优势:
- 逻辑正确性:真实反映了"用户拥有任一角色权限即可访问对应数据"的业务需求
- 查询灵活性:不会因为用户拥有多个角色而意外缩小数据范围
- 性能保障:通过合理的条件拼接,确保生成的SQL执行效率
- 维护性:清晰的逻辑分层使代码更易于理解和后续维护
最佳实践建议
在实际项目中使用JeecgBoot数据权限时,建议:
- 角色设计:合理规划角色和数据权限的分配,避免过度细分
- 测试验证:对多角色用户的数据访问进行充分测试
- 性能监控:对复杂权限组合的查询进行性能监控
- 文档记录:详细记录系统中的数据权限规则,便于后续维护
通过本次优化,JeecgBoot的数据权限机制更加符合实际业务场景需求,为用户提供了更灵活、更准确的数据访问控制能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322