Sidekiq部署后Worker不处理新任务的问题分析与解决
问题现象
在使用Sidekiq 7.3.7版本进行部署后,用户遇到了一个奇怪的问题:新部署的Sidekiq worker进程虽然显示正常运行(在Web界面中可以看到正确的进程数和线程数),但实际上并未处理任何队列中的任务。只有当用户手动点击"Stop All"按钮后,任务才会开始正常流动和处理。
环境背景
该问题出现在AWS ECS环境中,运行的是Ruby 3.4.1和Rails 8.0.1。Sidekiq使用了Pro和Enterprise版本(7.3.4),基础版本为7.3.7。系统配置了SuperFetch、可靠性调度器(Reliable Scheduler)和唯一性作业(Unique Jobs)等高级功能。
问题分析
从日志中可以观察到几个关键点:
- 部署完成后,Sidekiq进程正常启动并注册了超级队列(Super Queues)
- 周期性任务(Periodic Jobs)能够正常执行
- 常规队列任务却未被处理
- 手动停止所有worker后,系统恢复正常
深入分析后,发现这与Sidekiq 7.3.7版本中的一个已知问题有关,该问题与队列的暂停/恢复机制存在关联。在部署过程中,系统有时会执行队列的暂停和恢复操作,而7.3.7版本在此场景下存在缺陷,导致worker虽然显示为运行状态,但实际上并未从Redis获取新任务。
解决方案
经过验证,有以下两种解决方案:
-
回退版本:将Sidekiq降级到7.3.3版本可以立即解决问题。这是最快速的临时解决方案。
-
修改启动脚本:在自定义的Bash启动脚本中,确保使用
exec命令来启动Sidekiq进程。这样可以保证信号能够正确传递给子进程,避免潜在的信号处理问题。修改后的启动命令应为:exec $SIDEKIQ_CMD
最佳实践建议
- 在生产环境中部署前,应在测试环境充分验证新版本Sidekiq的行为
- 对于关键任务系统,考虑采用金丝雀发布策略,逐步替换worker节点
- 确保启动脚本正确处理进程信号,推荐使用
exec方式 - 监控系统不仅要关注worker进程是否存在,还应验证任务的实际处理情况
总结
Sidekiq作为Ruby生态中最流行的后台任务处理系统,其稳定性和可靠性至关重要。这次遇到的问题提醒我们,即使是成熟的开源项目,在版本升级时也可能引入意外的问题。作为开发者,我们需要建立完善的监控机制,确保能够及时发现并解决类似的生产环境问题。同时,保持对项目issue的关注,及时了解已知问题,也是维护系统稳定性的重要一环。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00