Sidekiq部署后Worker不处理新任务的问题分析与解决
问题现象
在使用Sidekiq 7.3.7版本进行部署后,用户遇到了一个奇怪的问题:新部署的Sidekiq worker进程虽然显示正常运行(在Web界面中可以看到正确的进程数和线程数),但实际上并未处理任何队列中的任务。只有当用户手动点击"Stop All"按钮后,任务才会开始正常流动和处理。
环境背景
该问题出现在AWS ECS环境中,运行的是Ruby 3.4.1和Rails 8.0.1。Sidekiq使用了Pro和Enterprise版本(7.3.4),基础版本为7.3.7。系统配置了SuperFetch、可靠性调度器(Reliable Scheduler)和唯一性作业(Unique Jobs)等高级功能。
问题分析
从日志中可以观察到几个关键点:
- 部署完成后,Sidekiq进程正常启动并注册了超级队列(Super Queues)
- 周期性任务(Periodic Jobs)能够正常执行
- 常规队列任务却未被处理
- 手动停止所有worker后,系统恢复正常
深入分析后,发现这与Sidekiq 7.3.7版本中的一个已知问题有关,该问题与队列的暂停/恢复机制存在关联。在部署过程中,系统有时会执行队列的暂停和恢复操作,而7.3.7版本在此场景下存在缺陷,导致worker虽然显示为运行状态,但实际上并未从Redis获取新任务。
解决方案
经过验证,有以下两种解决方案:
-
回退版本:将Sidekiq降级到7.3.3版本可以立即解决问题。这是最快速的临时解决方案。
-
修改启动脚本:在自定义的Bash启动脚本中,确保使用
exec命令来启动Sidekiq进程。这样可以保证信号能够正确传递给子进程,避免潜在的信号处理问题。修改后的启动命令应为:exec $SIDEKIQ_CMD
最佳实践建议
- 在生产环境中部署前,应在测试环境充分验证新版本Sidekiq的行为
- 对于关键任务系统,考虑采用金丝雀发布策略,逐步替换worker节点
- 确保启动脚本正确处理进程信号,推荐使用
exec方式 - 监控系统不仅要关注worker进程是否存在,还应验证任务的实际处理情况
总结
Sidekiq作为Ruby生态中最流行的后台任务处理系统,其稳定性和可靠性至关重要。这次遇到的问题提醒我们,即使是成熟的开源项目,在版本升级时也可能引入意外的问题。作为开发者,我们需要建立完善的监控机制,确保能够及时发现并解决类似的生产环境问题。同时,保持对项目issue的关注,及时了解已知问题,也是维护系统稳定性的重要一环。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00