ANARCI: 抗体编号与抗原受体分类工具指南
2024-09-11 21:28:25作者:尤辰城Agatha
项目介绍
ANARCI(Antibody Numbering and Antigen Receptor Classification)是一款专为抗体及T细胞受体(TCR)可变区域氨基酸序列设计的工具,能够根据IMGT、Chothia、Kabat、Martin(增强型Chothia)或AHo编号方案进行序列编号。它通过将输入序列与描述原始基因库的隐马尔可夫模型(HMM)进行对齐来识别域并进行注解。值得注意的是,虽然ANARCI利用V和J基因族的物种特异性对齐来确定抗体的物种,但其主要功能聚焦于编号而非作为主要的物种注释工具。
项目快速启动
要快速开始使用ANARCI,首先确保你的系统已安装了必要的依赖。推荐使用Conda环境来简化安装过程:
conda install -c conda-forge biopython -y
conda install -c bioconda hmmer=3.3.2 -y
git clone https://github.com/oxpig/ANARCI.git
cd ANARCI
python setup.py install
之后,你可以直接在命令行中使用ANARCI为单个序列或FASTA文件中的序列进行编号。例如,为一个示例序列编号:
echo "EVQLQQSGAEVVRSGASVKLSCTASGFNIKDYYIHWVKQRPEKGLEWIGWIDPEIGDTEYVPKFQGKATMTADTSSNTAYLQLSSLTSEDTAVYYCNAGHDYDRGRFPYWGQGTLVTVSA" | ANARCI -i -
或者为FASTA文件中的序列编号:
ANARCI -i your_sequences.fasta
应用案例和最佳实践
在免疫学研究中,ANARCI的应用广泛,尤其适用于:
- 抗体工程:通过精确的编号理解抗体结构变异,优化亲和力和特异性。
- TCR分析:分类和分析T细胞受体的多样性,用于免疫反应的理解和疾病模型的建立。
- 跨物种比较:尽管Web界面限制为人类和小鼠,利用本地安装的Python包可以分析其他物种的抗体和TCR,促进进化生物学的研究。
最佳实践
- 在处理大量数据时,建议先对数据预处理,确保序列质量。
- 选择正确的编号方案以符合研究目的。例如,IMGT编号被广泛接受,适合大多数应用场景。
- 利用ANARCI的输出进行进一步的数据分析,比如结合生物信息学工具进行序列聚类或特征提取。
典型生态项目
ANARCI是免疫学研究领域的一个关键组件,常与其他生物信息学工具结合使用,如用于抗体库分析、疫苗设计、以及免疫组库分析等场景。虽然该项目本身并没有直接的“生态项目”,但它支持与BioPython、hmmer等生态系统工具集成,这些工具共同构成了免疫学数据分析的强大工具链。
ANARCI通过提供标准化的编号系统,加强了与抗体数据库(如SAbDab、Thera-SAbDab)的互操作性,使得科研人员可以更轻松地比对和解析抗体特性,推动抗体药物开发和免疫学研究向前发展。
以上就是基于ANARCI开源项目的简明指南,希望对你在免疫学研究和抗体分析领域的应用有所帮助。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136