Locust性能测试工具2.34.0版本发布:增强UI响应式与OpenAI支持
Locust是一款开源的负载测试工具,它允许开发者使用Python代码定义用户行为,并模拟数百万用户同时访问系统。Locust以其轻量级、易扩展和分布式架构著称,特别适合进行Web应用和API的性能测试。
主要更新内容
1. 新增OpenAI用户支持
本次版本新增了对OpenAI API的原生支持,开发者现在可以直接使用Locust测试OpenAI服务的性能表现。这一特性为AI服务测试提供了便利,开发者可以轻松模拟大量用户同时调用OpenAI API的场景。
示例代码展示了如何快速创建OpenAI用户测试场景,这对于评估AI服务的并发处理能力和响应时间非常有帮助。
2. 响应式UI改进
Locust的Web界面现在完全支持响应式设计,这意味着测试人员可以在不同尺寸的设备上(包括手机和平板)方便地查看测试进度和结果。这一改进特别适合远程团队协作和现场演示场景。
UI改进还包括:
- 图表图例位置优化,避免在小屏幕上重叠
- 整体布局自适应调整,提升移动端体验
3. FastHttpUser稳定性增强
修复了FastHttpUser在使用failure()方法时可能出现的崩溃问题。现在当开发者忘记设置catch_response=True参数时,系统会优雅地处理这种情况,而不是直接崩溃,提高了测试脚本的健壮性。
4. 参数定义修复
修复了PostKwargs中可选参数定义缺失的问题,这使得API测试更加准确可靠,特别是在处理复杂的POST请求参数时。
技术意义与应用场景
这些更新使得Locust在以下场景中表现更出色:
-
AI服务测试:新增的OpenAI支持让开发者能够轻松测试AI服务的性能瓶颈,这在AI应用日益普及的今天尤为重要。
-
移动端查看:响应式UI使得测试人员可以随时随地通过移动设备查看测试进度,特别适合DevOps团队和远程协作场景。
-
复杂API测试:参数处理和错误处理的改进使得Locust能够更好地应对现代Web应用中常见的复杂API测试需求。
升级建议
对于现有用户,建议尽快升级到2.34.0版本以获取这些改进。特别是:
- 需要测试AI服务的团队
- 经常需要在移动设备上查看测试的用户
- 使用复杂API测试场景的开发者
升级过程简单,可以通过pip直接完成。新用户也可以从这个版本开始接触Locust,体验其强大的负载测试能力和改进后的用户界面。
Locust持续保持着活跃的开发节奏,这些更新再次证明了它作为现代负载测试工具的领导地位,特别是在需要高度定制化测试场景的开发环境中。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00