more-itertools项目中factor函数的优化探讨
2025-06-17 14:10:00作者:贡沫苏Truman
more-itertools是一个Python库,提供了许多有用的迭代器工具。其中factor函数用于分解整数的质因数,但当前实现存在一些局限性,值得探讨其优化方向。
当前实现的局限性
当前more-itertools中的factor函数采用试除法(trial division)进行质因数分解。这种方法虽然简单直接,但存在两个主要问题:
- 内存消耗大:由于依赖sieve函数生成质数表,当处理大数时会消耗大量内存
- 效率限制:仅适用于约10^15以下的数字,对于更大的数字效率急剧下降
Pollard's Rho算法改进方案
Pollard's Rho算法是一种更高效的质因数分解算法,特别适合分解大整数。该算法基于随机性和数学理论,能够快速找到合数的非平凡因数。
改进后的factor函数实现思路:
- 对于小数字(n < 1000),仍使用原试除法
- 对于大数字,使用Pollard's Rho算法递归分解
- 最终返回排序后的质因数列表
性能对比
改进后的算法在性能上有显著提升:
- 对于1637927*4514317,速度提升35倍
- 对于544935156363337,速度提升95倍
- 对于478929998243*6217,速度提升249倍
更重要的是,新算法可以处理高达10^30量级的数字,而内存消耗却大幅降低。
设计考量
在优化过程中,有几个关键设计决策需要权衡:
- 输出顺序:是否保持质因数有序输出
- 惰性求值:是否保持生成器特性
- API设计:是否通过参数控制行为
经过讨论,更倾向于保持有序输出,因为:
- 大多数用例需要所有质因数
- 有序输出更符合用户预期
- 结果具有确定性,不会随算法改进而变化
实现建议
最终的优化实现可以这样设计:
def factor(n):
todo = [n] if n > 1 else []
factors = []
while todo:
n = todo.pop()
if is_prime(n):
factors += [n]
elif n < 1000:
factors += factor_small(n)
else:
fact = pollard(n)
todo += (n // fact, fact)
return iter(sorted(factors))
这种实现既保持了API兼容性,又大幅提升了性能和适用范围,是较为理想的改进方案。
总结
对于more-itertools中的factor函数,采用Pollard's Rho算法进行优化是值得考虑的方向。它解决了原实现的内存和性能瓶颈,同时通过有序输出保持了结果的可预测性。这种改进使得函数能够处理更大范围的输入,同时保持简洁易用的API设计。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
235
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33