notebookJS 使用教程
1. 项目介绍
notebookJS 是一个用于在 Python Notebooks(如 Jupyter Notebook 和 Google Colab)中无缝集成 JavaScript 代码的 Python 库。它允许用户在 Python 环境中执行自定义的 JavaScript 代码,这对于实现和重用交互式数据可视化非常有用。notebookJS 能够自动下载和处理来自网络的 JavaScript 库和 CSS 样式表,并支持 Python 和 JavaScript 之间的双向通信。用户可以通过 JavaScript 触发 Python 回调函数,从而实现动态数据处理和前端更新。
2. 项目快速启动
安装
首先,您可以通过 pip 安装 notebookJS:
pip install notebookjs
或者,您可以克隆 GitHub 仓库并手动安装:
git clone https://github.com/jorgehpo/notebookJS.git
cd notebookJS
python setup.py install
基本使用
以下是一个简单的示例,展示如何在 Jupyter Notebook 中使用 notebookJS 执行 JavaScript 代码:
from notebookjs import execute_js
# 定义一个简单的 JavaScript 函数
helloworld_js = """
function helloworld(div_id, data) {
document.querySelector(div_id).textContent = "Hello, World!";
}
"""
# 执行 JavaScript 函数
execute_js(helloworld_js, "helloworld")
3. 应用案例和最佳实践
案例1:使用 D3.js 绘制圆形
以下示例展示了如何使用 D3.js 在 Jupyter Notebook 中绘制一个彩色圆形:
from notebookjs import execute_js
# 定义 JavaScript 代码
d3_circle_js = """
function draw_circle(div_id, data) {
d3.select(div_id)
.append("div")
.style("width", "50px")
.style("height", "50px")
.style("background-color", data.color)
.style("border-radius", "50px");
}
"""
# 执行 JavaScript 函数
execute_js(d3_circle_js, "draw_circle", data_dict={"color": "red"})
案例2:双向通信
以下示例展示了如何在 JavaScript 和 Python 之间进行双向通信:
from notebookjs import execute_js
# 定义 Python 回调函数
def compute_power_2(data):
n = data['n']
n2 = n ** 2
return {"power2": n2}
# 定义 JavaScript 代码
callback_js = """
function callback_example(div_id, data) {
let comm = new CommAPI("compute_power_2", (ret) => {
alert("The returned value is " + ret.power2);
});
comm.call({n: 3});
}
"""
# 执行 JavaScript 函数
execute_js(callback_js, "callback_example", callbacks={"compute_power_2": compute_power_2})
4. 典型生态项目
Jupyter Notebook
Jupyter Notebook 是一个开源的 Web 应用程序,允许用户创建和共享包含实时代码、方程、可视化和叙述性文本的文档。notebookJS 与 Jupyter Notebook 无缝集成,使得在 Jupyter 环境中执行 JavaScript 代码变得非常方便。
Google Colab
Google Colab 是一个基于云的 Jupyter Notebook 环境,允许用户在浏览器中编写和执行 Python 代码。notebookJS 同样支持 Google Colab,用户可以在 Colab 中使用 JavaScript 进行交互式数据可视化。
D3.js
D3.js 是一个用于数据可视化的 JavaScript 库。通过 notebookJS,用户可以在 Jupyter Notebook 或 Google Colab 中直接使用 D3.js 进行复杂的数据可视化,而无需离开 Python 环境。
通过以上教程,您应该能够快速上手使用 notebookJS,并在 Python Notebooks 中实现丰富的 JavaScript 功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00