notebookJS 使用教程
1. 项目介绍
notebookJS 是一个用于在 Python Notebooks(如 Jupyter Notebook 和 Google Colab)中无缝集成 JavaScript 代码的 Python 库。它允许用户在 Python 环境中执行自定义的 JavaScript 代码,这对于实现和重用交互式数据可视化非常有用。notebookJS 能够自动下载和处理来自网络的 JavaScript 库和 CSS 样式表,并支持 Python 和 JavaScript 之间的双向通信。用户可以通过 JavaScript 触发 Python 回调函数,从而实现动态数据处理和前端更新。
2. 项目快速启动
安装
首先,您可以通过 pip 安装 notebookJS:
pip install notebookjs
或者,您可以克隆 GitHub 仓库并手动安装:
git clone https://github.com/jorgehpo/notebookJS.git
cd notebookJS
python setup.py install
基本使用
以下是一个简单的示例,展示如何在 Jupyter Notebook 中使用 notebookJS 执行 JavaScript 代码:
from notebookjs import execute_js
# 定义一个简单的 JavaScript 函数
helloworld_js = """
function helloworld(div_id, data) {
document.querySelector(div_id).textContent = "Hello, World!";
}
"""
# 执行 JavaScript 函数
execute_js(helloworld_js, "helloworld")
3. 应用案例和最佳实践
案例1:使用 D3.js 绘制圆形
以下示例展示了如何使用 D3.js 在 Jupyter Notebook 中绘制一个彩色圆形:
from notebookjs import execute_js
# 定义 JavaScript 代码
d3_circle_js = """
function draw_circle(div_id, data) {
d3.select(div_id)
.append("div")
.style("width", "50px")
.style("height", "50px")
.style("background-color", data.color)
.style("border-radius", "50px");
}
"""
# 执行 JavaScript 函数
execute_js(d3_circle_js, "draw_circle", data_dict={"color": "red"})
案例2:双向通信
以下示例展示了如何在 JavaScript 和 Python 之间进行双向通信:
from notebookjs import execute_js
# 定义 Python 回调函数
def compute_power_2(data):
n = data['n']
n2 = n ** 2
return {"power2": n2}
# 定义 JavaScript 代码
callback_js = """
function callback_example(div_id, data) {
let comm = new CommAPI("compute_power_2", (ret) => {
alert("The returned value is " + ret.power2);
});
comm.call({n: 3});
}
"""
# 执行 JavaScript 函数
execute_js(callback_js, "callback_example", callbacks={"compute_power_2": compute_power_2})
4. 典型生态项目
Jupyter Notebook
Jupyter Notebook 是一个开源的 Web 应用程序,允许用户创建和共享包含实时代码、方程、可视化和叙述性文本的文档。notebookJS 与 Jupyter Notebook 无缝集成,使得在 Jupyter 环境中执行 JavaScript 代码变得非常方便。
Google Colab
Google Colab 是一个基于云的 Jupyter Notebook 环境,允许用户在浏览器中编写和执行 Python 代码。notebookJS 同样支持 Google Colab,用户可以在 Colab 中使用 JavaScript 进行交互式数据可视化。
D3.js
D3.js 是一个用于数据可视化的 JavaScript 库。通过 notebookJS,用户可以在 Jupyter Notebook 或 Google Colab 中直接使用 D3.js 进行复杂的数据可视化,而无需离开 Python 环境。
通过以上教程,您应该能够快速上手使用 notebookJS,并在 Python Notebooks 中实现丰富的 JavaScript 功能。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04