首页
/ Hugging Face Hub v0.33.0发布:新增Featherless.AI和Groq两大AI推理服务提供商

Hugging Face Hub v0.33.0发布:新增Featherless.AI和Groq两大AI推理服务提供商

2025-06-18 16:03:06作者:魏侃纯Zoe

Hugging Face Hub作为当前最流行的机器学习模型托管平台之一,持续为开发者提供便捷的模型共享与部署服务。本次发布的v0.33.0版本带来了两项重要的新功能:新增Featherless.AI和Groq两家AI推理服务提供商的支持,进一步丰富了平台的模型推理能力。

Featherless.AI:无服务器AI推理新选择

Featherless AI以其独特的模型加载和GPU编排技术脱颖而出,为用户提供了异常丰富的模型选择。传统上,AI服务提供商要么提供有限模型集的低成本访问,要么提供无限模型范围但需要用户自行管理服务器和相关运维成本。Featherless AI则完美结合了两者的优势,既提供无与伦比的模型范围和多样性,又保持了无服务器定价模式。

开发者现在可以通过Hugging Face Hub的InferenceClient轻松接入Featherless.AI的服务:

from huggingface_hub import InferenceClient

client = InferenceClient(provider="featherless-ai")

completion = client.chat.completions.create(
    model="deepseek-ai/DeepSeek-R1-0528", 
    messages=[
        {
            "role": "user",
            "content": "法国的首都是哪里?"
        }
    ], 
)

这段代码展示了如何使用Featherless.AI提供的DeepSeek-R1-0528模型进行简单的问答任务。开发者只需指定provider参数为"featherless-ai",即可享受其丰富的模型库和便捷的无服务器体验。

Groq:革命性LPU™技术带来极致推理速度

Groq公司凭借其创新的语言处理单元(LPU™)技术,为计算密集型应用提供了前所未有的推理速度。LPU™专为克服GPU在推理任务中的局限性而设计,提供显著更低的延迟和更高的吞吐量,是实时AI应用的理想选择。

Groq特别适合需要快速响应的AI应用场景,其API让开发者能够轻松将各种公开可用的LLM模型集成到自己的应用中。以下示例展示了如何使用Groq的多模态能力处理包含文本和图像的输入:

from huggingface_hub import InferenceClient

client = InferenceClient(provider="groq")

completion = client.chat.completions.create(
    model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "用一句话描述这张图片"},
                {
                    "type": "image_url",
                    "image_url": {"url": "https://example.com/image.jpg"},
                },
            ],
        }
    ],
)

这个例子展示了Groq处理多模态输入的能力,开发者可以同时提交文本和图像内容,模型将综合理解并给出响应。

本地代理与Tiny-agents功能增强

本次更新还带来了对本地服务器(如llama.cpp)运行tiny-agents的支持,这意味着完全本地的AI代理即将成为现实。开发者现在可以:

  1. 通过MCP(Machine Control Protocol)支持本地/远程端点推理
  2. 修复tiny-agents CLI中的开发者体验问题
  3. 将JSON解析和运行时工具错误重新注入聊天历史记录

这些改进使得本地AI代理的开发更加顺畅,为构建完全自主的本地AI系统奠定了基础。

文档与国际化

为服务更广泛的开发者群体,本次更新新增了印地语(Hindi)的文档翻译,体现了Hugging Face社区的国际化和包容性。

质量改进与错误修复

v0.33.0版本还包含多项质量改进和错误修复:

  1. 优化了hf-xet的静默模式
  2. 修复了包含超过5万文件的大型仓库的快照下载问题
  3. 改进了tqdm子类的参数处理
  4. 修复了表格问答功能的问题
  5. 增强了推理搜索功能

这些改进虽然看似微小,但极大地提升了开发者的日常使用体验。

总结

Hugging Face Hub v0.33.0通过引入Featherless.AI和Groq两大推理服务提供商,显著扩展了平台的模型推理能力。Featherless.AI的无服务器模型访问和Groq的革命性LPU™技术为开发者提供了更多选择,而本地代理功能的增强则为构建完全自主的AI系统铺平了道路。随着国际化支持的不断完善和各项质量改进,Hugging Face Hub正持续巩固其作为机器学习模型托管平台领导者的地位。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8