Hugging Face Hub v0.33.0发布:新增Featherless.AI和Groq两大AI推理服务提供商
Hugging Face Hub作为当前最流行的机器学习模型托管平台之一,持续为开发者提供便捷的模型共享与部署服务。本次发布的v0.33.0版本带来了两项重要的新功能:新增Featherless.AI和Groq两家AI推理服务提供商的支持,进一步丰富了平台的模型推理能力。
Featherless.AI:无服务器AI推理新选择
Featherless AI以其独特的模型加载和GPU编排技术脱颖而出,为用户提供了异常丰富的模型选择。传统上,AI服务提供商要么提供有限模型集的低成本访问,要么提供无限模型范围但需要用户自行管理服务器和相关运维成本。Featherless AI则完美结合了两者的优势,既提供无与伦比的模型范围和多样性,又保持了无服务器定价模式。
开发者现在可以通过Hugging Face Hub的InferenceClient轻松接入Featherless.AI的服务:
from huggingface_hub import InferenceClient
client = InferenceClient(provider="featherless-ai")
completion = client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1-0528",
messages=[
{
"role": "user",
"content": "法国的首都是哪里?"
}
],
)
这段代码展示了如何使用Featherless.AI提供的DeepSeek-R1-0528模型进行简单的问答任务。开发者只需指定provider参数为"featherless-ai",即可享受其丰富的模型库和便捷的无服务器体验。
Groq:革命性LPU™技术带来极致推理速度
Groq公司凭借其创新的语言处理单元(LPU™)技术,为计算密集型应用提供了前所未有的推理速度。LPU™专为克服GPU在推理任务中的局限性而设计,提供显著更低的延迟和更高的吞吐量,是实时AI应用的理想选择。
Groq特别适合需要快速响应的AI应用场景,其API让开发者能够轻松将各种公开可用的LLM模型集成到自己的应用中。以下示例展示了如何使用Groq的多模态能力处理包含文本和图像的输入:
from huggingface_hub import InferenceClient
client = InferenceClient(provider="groq")
completion = client.chat.completions.create(
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "用一句话描述这张图片"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/image.jpg"},
},
],
}
],
)
这个例子展示了Groq处理多模态输入的能力,开发者可以同时提交文本和图像内容,模型将综合理解并给出响应。
本地代理与Tiny-agents功能增强
本次更新还带来了对本地服务器(如llama.cpp)运行tiny-agents的支持,这意味着完全本地的AI代理即将成为现实。开发者现在可以:
- 通过MCP(Machine Control Protocol)支持本地/远程端点推理
- 修复tiny-agents CLI中的开发者体验问题
- 将JSON解析和运行时工具错误重新注入聊天历史记录
这些改进使得本地AI代理的开发更加顺畅,为构建完全自主的本地AI系统奠定了基础。
文档与国际化
为服务更广泛的开发者群体,本次更新新增了印地语(Hindi)的文档翻译,体现了Hugging Face社区的国际化和包容性。
质量改进与错误修复
v0.33.0版本还包含多项质量改进和错误修复:
- 优化了hf-xet的静默模式
- 修复了包含超过5万文件的大型仓库的快照下载问题
- 改进了tqdm子类的参数处理
- 修复了表格问答功能的问题
- 增强了推理搜索功能
这些改进虽然看似微小,但极大地提升了开发者的日常使用体验。
总结
Hugging Face Hub v0.33.0通过引入Featherless.AI和Groq两大推理服务提供商,显著扩展了平台的模型推理能力。Featherless.AI的无服务器模型访问和Groq的革命性LPU™技术为开发者提供了更多选择,而本地代理功能的增强则为构建完全自主的AI系统铺平了道路。随着国际化支持的不断完善和各项质量改进,Hugging Face Hub正持续巩固其作为机器学习模型托管平台领导者的地位。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00