MindSearch项目多卡部署实践:解决显存不足问题
2025-06-03 19:57:40作者:郜逊炳
在本地部署大语言模型时,显存不足是开发者经常遇到的问题。本文将以MindSearch项目中InternLM2-5-7B模型的部署为例,详细介绍如何通过多卡并行解决显存不足问题。
问题背景
InternLM2-5-7B这类大模型在单卡环境下运行时,经常会遇到显存不足的问题。特别是在使用LMDeployServer进行本地部署时,默认配置可能无法充分利用多GPU资源。
技术解决方案
1. 张量并行(Tensor Parallelism)原理
张量并行是一种模型并行技术,它将模型的参数和计算分布在多个GPU上。具体实现方式是将大型矩阵运算分割到不同设备上执行,从而降低单个设备的显存需求。
2. LMDeploy中的实现方式
在LMDeploy中,可以通过设置tp(tensor parallel)参数来指定使用的GPU数量。但在实际使用中发现,源码中存在一个潜在问题:serve函数会将tp参数从kwargs中移除,导致配置无法生效。
3. 解决方案实践
有两种可行的解决方案:
方案一:直接修改源码
找到Python环境中的messages.py文件(通常位于python3.11/site-packages/lmdeploy/messages.py),将141行的tp默认值修改为需要的GPU数量(如4)。
方案二:命令行参数
使用LMDeploy命令行工具时,可以直接指定--tp参数:
lmdeploy serve api_server /path/to/model --server-port 8089 --tp 4
验证与效果
在4块A10 GPU上部署InternLM2-5-7B模型后,系统可以正常运行,各GPU的显存使用情况均衡,成功解决了单卡显存不足的问题。
注意事项
- 确保所有GPU设备型号相同,避免因硬件差异导致性能问题
- 多卡并行会引入额外的通信开销,实际性能提升可能低于理论值
- 不同版本的LMDeploy可能有不同的参数处理方式,需要根据实际情况调整
总结
通过合理配置张量并行参数,开发者可以充分利用多GPU资源,解决大模型部署中的显存瓶颈问题。MindSearch项目的实践表明,这种方法对于InternLM系列模型的部署是行之有效的。未来随着模型规模的不断扩大,多卡并行技术将变得更加重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1