CloudCompare 开源项目教程
1. 项目介绍
CloudCompare 是一个用于处理 3D 点云(和三角网格)的开源软件。它最初设计用于比较两个 3D 点云(例如通过激光扫描仪获得的数据)或点云与三角网格之间的比较。CloudCompare 依赖于高度优化的八叉树结构,特别适用于这种用例。它还能够处理大量的点云数据,通常超过 1000 万个点,最大支持 1.2 亿个点(需要 2GB 内存)。
项目主页:CloudCompare 官网
2. 项目快速启动
2.1 安装依赖
在开始之前,确保你的系统已经安装了必要的依赖项,如 OpenGL 等。
2.2 克隆项目
首先,克隆 CloudCompare 的 GitHub 仓库到本地:
git clone https://github.com/CloudCompare/CloudCompare.git
cd CloudCompare
2.3 编译项目
使用 CMake 进行项目配置和编译:
mkdir build
cd build
cmake ..
make
2.4 运行项目
编译完成后,可以直接运行 CloudCompare:
./CloudCompare
3. 应用案例和最佳实践
3.1 点云数据比较
CloudCompare 最常见的应用场景是点云数据的比较。例如,可以使用 CloudCompare 来比较两个通过激光扫描仪获取的点云数据,分析它们之间的差异。
3.2 点云与网格的比较
除了点云之间的比较,CloudCompare 还可以用于点云与三角网格之间的比较。这在建筑、考古等领域非常有用。
3.3 数据可视化
CloudCompare 提供了强大的数据可视化功能,可以用于展示和分析大规模的 3D 点云数据。
4. 典型生态项目
4.1 PCL (Point Cloud Library)
PCL 是一个用于 2D/3D 图像和点云处理的开源项目。它与 CloudCompare 可以很好地结合使用,提供更强大的点云处理能力。
4.2 Open3D
Open3D 是一个用于 3D 数据处理的开源库,支持点云、网格、体素等多种数据格式。它可以与 CloudCompare 一起使用,扩展 3D 数据处理的生态系统。
4.2 Blender
Blender 是一个开源的 3D 建模和渲染软件,可以与 CloudCompare 结合使用,进行更复杂的 3D 数据处理和可视化。
通过以上步骤,你可以快速上手 CloudCompare,并了解其在实际应用中的使用方法和相关生态项目。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00