开源项目 artificial-adversary 使用教程
2024-08-27 01:57:27作者:舒璇辛Bertina
项目介绍
artificial-adversary 是一个由 Airbnb 开发的开源工具,旨在生成对抗性文本示例并测试机器学习模型。该项目通过生成与原始文本相似但含义不同的文本,来测试模型的鲁棒性。这种技术可以帮助开发者在模型部署前发现并修复潜在的漏洞。
项目快速启动
安装
首先,确保你已经安装了 Python 环境。然后使用 pip 安装 Adversary:
pip install Adversary
下载语料库
安装完成后,下载必要的语料库:
python -m textblob download_corpora
示例代码
以下是一个简单的示例,展示如何使用 Adversary 生成对抗性文本并测试模型:
from Adversary import Adversary
# 初始化 Adversary
gen = Adversary(verbose=True, output='Output/')
# 原始文本
texts_original = ['tell me awful things']
# 生成对抗性文本
texts_generated = gen.generate(texts_original)
# 测试模型
metrics_single, metrics_group = gen.attack(texts_original, texts_generated, lambda x: 1)
print(texts_generated)
print(metrics_single)
print(metrics_group)
应用案例和最佳实践
数据集增强
对抗性文本可以用于数据集增强,通过训练模型识别和处理这些对抗性示例,提高模型的鲁棒性。例如,在自然语言处理任务中,可以使用对抗性文本来训练模型,使其在面对恶意输入时仍能保持性能。
模型评估
在模型评估阶段,使用对抗性文本可以更全面地测试模型的性能。通过模拟实际应用中可能遇到的攻击,开发者可以发现模型在特定情况下的弱点,并进行针对性的优化。
典型生态项目
textblob
textblob 是一个用于处理文本数据的 Python 库,提供了简单的 API 来进行文本处理任务,如分词、词性标注、情感分析等。artificial-adversary 依赖于 textblob 来处理和生成文本。
nltk
nltk(Natural Language Toolkit)是另一个广泛使用的 Python 库,用于处理人类语言数据。它提供了大量的文本处理工具和资源,包括分词、词性标注、句法分析等。artificial-adversary 也依赖于 nltk 来完成一些基础的文本处理任务。
通过结合这些生态项目,artificial-adversary 能够提供更强大的文本生成和模型测试功能,帮助开发者构建更健壮的机器学习模型。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246